@techreport{5422, abstract = {Notes from the Third Plenary for the Research Data Alliance in Dublin, Ireland on March 26 to 28, 2014 with focus on starting an institutional research data repository.}, author = {Porsche, Jana}, publisher = {none}, title = {{Notes from Research Data Alliance Plenary Meeting in Dublin, Ireland}}, year = {2014}, } @misc{5424, abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.}, author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush}, issn = {2664-1690}, pages = {12}, publisher = {IST Austria}, title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}}, doi = {10.15479/AT:IST-2014-305-v1-1}, year = {2014}, } @misc{5426, abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.}, author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush}, issn = {2664-1690}, pages = {10}, publisher = {IST Austria}, title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}}, doi = {10.15479/AT:IST-2014-305-v2-1}, year = {2014}, } @misc{5423, abstract = {We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm- deadline real-time tasks based on multi-objective graphs: Given a taskset and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. a clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including D(over), that have been proposed in the past, for various tasksets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are tasksets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application. }, author = {Chatterjee, Krishnendu and Kössler, Alexander and Pavlogiannis, Andreas and Schmid, Ulrich}, issn = {2664-1690}, pages = {14}, publisher = {IST Austria}, title = {{A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks}}, doi = {10.15479/AT:IST-2014-300-v1-1}, year = {2014}, } @misc{5427, abstract = {We consider graphs with n nodes together with their tree-decomposition that has b = O ( n ) bags and width t , on the standard RAM computational model with wordsize W = Θ (log n ) . Our contributions are two-fold: Our first contribution is an algorithm that given a graph and its tree-decomposition as input, computes a binary and balanced tree-decomposition of width at most 4 · t + 3 of the graph in O ( b ) time and space, improving a long-standing (from 1992) bound of O ( n · log n ) time for constant treewidth graphs. Our second contribution is on reachability queries for low treewidth graphs. We build on our tree-balancing algorithm and present a data-structure for graph reachability that requires O ( n · t 2 ) preprocessing time, O ( n · t ) space, and O ( d t/ log n e ) time for pair queries, and O ( n · t · log t/ log n ) time for single-source queries. For constant t our data-structure uses O ( n ) time for preprocessing, O (1) time for pair queries, and O ( n/ log n ) time for single-source queries. This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries.}, author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas}, issn = {2664-1690}, pages = {24}, publisher = {IST Austria}, title = {{Optimal tree-decomposition balancing and reachability on low treewidth graphs}}, doi = {10.15479/AT:IST-2014-314-v1-1}, year = {2014}, } @misc{5425, abstract = { We consider partially observable Markov decision processes (POMDPs) with a set of target states and every transition is associated with an integer cost. The optimization objective we study asks to minimize the expected total cost till the target set is reached, while ensuring that the target set is reached almost-surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost and the bound is double exponential; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples of interest.}, author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4}, issn = {2664-1690}, pages = {22}, publisher = {IST Austria}, title = {{Optimal cost almost-sure reachability in POMDPs}}, year = {2014}, } @misc{5415, abstract = {Recently there has been a significant effort to add quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, several basic system properties such as average response time cannot be expressed with weighted automata. In this work, we introduce nested weighted automata as a new formalism for expressing important quantitative properties such as average response time. We establish an almost complete decidability picture for the basic decision problems for nested weighted automata, and illustrate its applicability in several domains. }, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan}, issn = {2664-1690}, pages = {27}, publisher = {IST Austria}, title = {{Nested weighted automata}}, doi = {10.15479/AT:IST-2014-170-v1-1}, year = {2014}, } @misc{5421, abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.}, author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin}, issn = {2664-1690}, pages = {27}, publisher = {IST Austria}, title = {{The complexity of evolution on graphs}}, doi = {10.15479/AT:IST-2014-190-v2-2}, year = {2014}, } @article{5813, abstract = {We consider homogeneous Bose gas in a large cubic box with periodic boundary conditions, at zero temperature. We analyze its excitation spectrum in a certain kind of a mean-field infinite-volume limit. We prove that under appropriate conditions the excitation spectrum has the form predicted by the Bogoliubov approximation. Our result can be viewed as an extension of the result of Seiringer (Commun. Math. Phys.306:565–578, 2011) to large volumes.}, author = {Dereziński, Jan and Napiórkowski, Marcin M}, issn = {1424-0637}, journal = {Annales Henri Poincaré}, number = {12}, pages = {2409--2439}, publisher = {Springer Nature}, title = {{Excitation spectrum of interacting bosons in the Mean-Field Infinite-Volume limit}}, doi = {10.1007/s00023-013-0302-4}, volume = {15}, year = {2014}, } @inproceedings{5810, abstract = {A discrete spherical geodesic path between two voxels s and t lying on a discrete sphere is a/the 1-connected shortest path from s to t, comprising voxels of the discrete sphere intersected by the real plane passing through s, t, and the center of the sphere. We show that the set of sphere voxels intersected by the aforesaid real plane always contains a 1-connected cycle passing through s and t, and each voxel in this set lies within an isothetic distance of 32 from the concerned plane. Hence, to compute the path, the algorithm starts from s, and iteratively computes each voxel p of the path from the predecessor of p. A novel number-theoretic property and the 48-symmetry of discrete sphere are used for searching the 1-connected voxels comprising the path. The algorithm is output-sensitive, having its time and space complexities both linear in the length of the path. It can be extended for constructing 1-connected discrete 3D circles of arbitrary orientations, specified by a few appropriate input parameters. Experimental results and related analysis demonstrate its efficiency and versatility.}, author = {Biswas, Ranita and Bhowmick, Partha}, isbn = {9783642387081}, issn = {0302-9743}, location = {Siena, Italy}, pages = {396--409}, publisher = {Springer}, title = {{On Finding Spherical Geodesic Paths and Circles in ℤ3}}, doi = {10.1007/978-3-319-09955-2_33}, volume = {8668}, year = {2014}, } @article{589, abstract = {We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.}, author = {Lee, Jongmin and Vrijsen, Geert and Teper, Igor and Onur Hosten and Kasevich, Mark A}, journal = {Optics Letters}, number = {13}, pages = {4005 -- 4008}, publisher = {OSA}, title = {{Many-atom-cavity QED system with homogeneous atom-cavity coupling}}, doi = {10.1364/OL.39.004005}, volume = {39}, year = {2014}, } @article{6126, abstract = {Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca2+ responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.}, author = {Gross, E. and Soltesz, Z. and Oda, S. and Zelmanovich, V. and Abergel, Z. and de Bono, Mario}, issn = {0270-6474}, journal = {Journal of Neuroscience}, number = {50}, pages = {16726--16738}, publisher = {Society for Neuroscience}, title = {{GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings}}, doi = {10.1523/jneurosci.5368-13.2014}, volume = {34}, year = {2014}, } @article{6124, abstract = {Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis.}, author = {Chen, Changchun and Itakura, Eisuke and Weber, Katherine P. and Hegde, Ramanujan S. and de Bono, Mario}, issn = {1553-7404}, journal = {PLoS Genetics}, number = {3}, publisher = {Public Library of Science (PLoS)}, title = {{An ER complex of ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism}}, doi = {10.1371/journal.pgen.1004082}, volume = {10}, year = {2014}, } @article{6122, author = {Linneweber, Gerit A. and Jacobson, Jake and Busch, Karl Emanuel and Hudry, Bruno and Christov, Christo P. and Dormann, Dirk and Yuan, Michaela and Otani, Tomoki and Knust, Elisabeth and de Bono, Mario and Miguel-Aliaga, Irene}, issn = {0092-8674}, journal = {Cell}, number = {1-2}, pages = {69--83}, publisher = {Elsevier}, title = {{Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching}}, doi = {10.1016/j.cell.2013.12.008}, volume = {156}, year = {2014}, } @article{6319, abstract = {Nous étudions le comportement asymptotique du nombre de variétés dans une certaine classe ne satisfaisant pas le principe de Hasse. Cette étude repose sur des résultats récemmentobtenus par Colliot-Thélène.}, author = {Bretèche, Régis de la and Browning, Timothy D}, issn = {1246-7405}, journal = {Journal de Théorie des Nombres de Bordeaux}, number = {1}, pages = {25--44}, publisher = {Cellule MathDoc/CEDRAM}, title = {{Contre-exemples au principe de Hasse pour certains tores coflasques}}, doi = {10.5802/jtnb.857}, volume = {26}, year = {2014}, } @inproceedings{6740, abstract = {We describe coding techniques that achieve the capacity of a discrete memoryless asymmetric channel. To do so, we discuss how recent advances in coding for symmetric channels yield more efficient solutions also for the asymmetric case. In more detail, we consider three basic approaches. The first one is Gallager's scheme that concatenates a linear code with a non-linear mapper, in order to bias the input distribution. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Further, we derive a scaling law between the gap to capacity, the cardinality of channel input and output alphabets, and the required size of the mapper. The second one is an integrated approach in which the coding scheme is used both for source coding, in order to create codewords with the capacity-achieving distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third approach is based on an idea due to Böcherer and Mathar and separates completely the two tasks of source coding and channel coding by “chaining” together several codewords. We prove that we can combine any suitable source code with any suitable channel code in order to provide optimal schemes for asymmetric channels. In particular, polar codes and spatially coupled codes fulfill the required conditions.}, author = {Mondelli, Marco and Urbanke, Rudiger and Hassani, Hamed}, booktitle = {52nd Annual Allerton Conference on Communication, Control, and Computing}, location = {Monticello, IL, United States}, pages = {789--796}, publisher = {IEEE}, title = {{How to achieve the capacity of asymmetric channels}}, doi = {10.1109/allerton.2014.7028535}, year = {2014}, } @article{6739, abstract = {We explore the relationship between polar and RM codes and we describe a coding scheme which improves upon the performance of the standard polar code at practical block lengths. Our starting point is the experimental observation that RM codes have a smaller error probability than polar codes under MAP decoding. This motivates us to introduce a family of codes that “interpolates” between RM and polar codes, call this family C inter = {C α : α ∈ [0, 1j}, where C α|α=1 is the original polar code, and C α|α=0 is an RM code. Based on numerical observations, we remark that the error probability under MAP decoding is an increasing function of α. MAP decoding has in general exponential complexity, but empirically the performance of polar codes at finite block lengths is boosted by moving along the family Cinter even under low-complexity decoding schemes such as, for instance, belief propagation or successive cancellation list decoder. We demonstrate the performance gain via numerical simulations for transmission over the erasure channel as well as the Gaussian channel.}, author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger}, issn = {0090-6778}, journal = {IEEE Transactions on Communications}, number = {9}, pages = {3084--3091}, publisher = {IEEE}, title = {{From polar to Reed-Muller codes: A technique to improve the finite-length performance}}, doi = {10.1109/tcomm.2014.2345069}, volume = {62}, year = {2014}, } @article{6744, abstract = {With the aim of extending the coverage and improving the performance of impulse radio ultra-wideband (UWB) systems, this paper focuses on developing a novel single differential encoded decode and forward (DF) non-cooperative relaying scheme (NCR). To favor simple receiver structures, differential noncoherent detection is employed which enables effective energy capture without any channel estimation. Putting emphasis on the general case of multi-hop relaying, we illustrate an original algorithm for the joint power allocation and path selection (JPAPS), minimizing an approximate expression of the overall bit error rate (BER). In particular, after deriving a closed-form power allocation strategy, the optimal path selection is reduced to a shortest path problem on a connected graph, which can be solved without any topology information with complexity O(N 3 ), N being the number of available relays of the network. An approximate scheme is also presented, which reduces the complexity to O(N 2 ) while showing a negligible performance loss, and for benchmarking purposes, an exhaustive-search based multi-hop DF cooperative strategy is derived. Simulation results for various network setups corroborate the effectiveness of the proposed low-complexity JPAPS algorithm, which favorably compares to existing AF and DF relaying methods.}, author = {Mondelli, Marco and Zhou, Qi and Lottici, Vincenzo and Ma, Xiaoli}, journal = {IEEE Transactions on Wireless Communications}, number = {3}, pages = {1397--1409}, publisher = {IEEE}, title = {{Joint power allocation and path selection for multi-hop noncoherent decode and forward UWB communications}}, doi = {10.1109/twc.2014.020914.130669}, volume = {13}, year = {2014}, } @inproceedings{10885, abstract = {Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games. In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile such that all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players objective, then the objective of every player is violated. We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games.We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.}, author = {Chatterjee, Krishnendu and Doyen, Laurent and Filiot, Emmanuel and Raskin, Jean-François}, booktitle = {VMCAI 2014: Verification, Model Checking, and Abstract Interpretation}, isbn = {9783642540127}, issn = {1611-3349}, location = {San Diego, CA, United States}, pages = {78--97}, publisher = {Springer Nature}, title = {{Doomsday equilibria for omega-regular games}}, doi = {10.1007/978-3-642-54013-4_5}, volume = {8318}, year = {2014}, } @book{6853, abstract = {This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields.}, author = {Edelsbrunner, Herbert}, isbn = {9-783-3190-5956-3}, issn = {2191-5318}, pages = {IX, 110}, publisher = {Springer Nature}, title = {{A Short Course in Computational Geometry and Topology}}, doi = {10.1007/978-3-319-05957-0}, year = {2014}, } @techreport{7038, author = {Huszár, Kristóf and Rolinek, Michal}, pages = {5}, publisher = {IST Austria}, title = {{Playful Math - An introduction to mathematical games}}, year = {2014}, } @article{7071, abstract = {Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but in most systems they are connected only indirectly—via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin–orbit coupling directly, such that these numbers become entwined together and the Mott physics attains a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin–anisotropic magnetic interactions, coupling the spin to a given spatial direction of exchange and leading to strongly frustrated magnetism. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb and exhibits striking evidence for highly spin–anisotropic exchange. The basic structural units of this material suggest that a new family of three-dimensional structures could exist, the ‘harmonic honeycomb’ iridates, of which the present compound is the first example.}, author = {Modic, Kimberly A and Smidt, Tess E. and Kimchi, Itamar and Breznay, Nicholas P. and Biffin, Alun and Choi, Sungkyun and Johnson, Roger D. and Coldea, Radu and Watkins-Curry, Pilanda and McCandless, Gregory T. and Chan, Julia Y. and Gandara, Felipe and Islam, Z. and Vishwanath, Ashvin and Shekhter, Arkady and McDonald, Ross D. and Analytis, James G.}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Science and Business Media LLC}, title = {{Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate}}, doi = {10.1038/ncomms5203}, volume = {5}, year = {2014}, } @article{7072, abstract = {We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO4), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons.}, author = {Lancaster, T. and Goddard, P. A. and Blundell, S. J. and Foronda, F. R. and Ghannadzadeh, S. and Möller, J. S. and Baker, P. J. and Pratt, F. L. and Baines, C. and Huang, L. and Wosnitza, J. and McDonald, R. D. and Modic, Kimberly A and Singleton, J. and Topping, C. V. and Beale, T. A. W. and Xiao, F. and Schlueter, J. A. and Barton, A. M. and Cabrera, R. D. and Carreiro, K. E. and Tran, H. E. and Manson, J. L.}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {20}, publisher = {APS}, title = {{Controlling magnetic order and quantum disorder in molecule-based magnets}}, doi = {10.1103/physrevlett.112.207201}, volume = {112}, year = {2014}, } @inbook{7303, abstract = {The electrolyte in the non-aqueous (aprotic) lithium air battery has a profound influence on the reactions that occur at the anode and cathode, and hence its overall operation on discharge/charge. It must possess a wide range of attributes, exceeding the requirements of electrolytes for Lithium ion batteries by far. The most important additional issues are stability at both anode and cathode in the presence of O2. The known problems with cycling the Li metal/non-aqueous electrolyte interface are further complicated by O2. New and much less understood are the reactions at the O2 cathode/electrolyte interface where the highly reversible formation/decomposition of Li2O2 on discharge/charge is critical for the operation of the non-aqueous lithium air battery. Many aprotic electrolytes exhibit decomposition at the cathode during discharge and charge due to the presence of reactive reduced O2 species affecting potential, capacity and kinetics on discharge and charge, cyclability and calendar life. Identifying suitable electrolytes is one of the key challenges for the non-aqueous lithium air battery at the present time. Following the realisation that cyclability of such cells in the initially used organic carbonate electrolytes is due to back-to-back irreversible reactions the stability of the non-aqueous electrolytes became a major focus of research on rechargeable lithium air batteries. This realisation led to the establishment of a suite of experimental and computational methods capable of screening the stability of electrolytes. These allow for greater mechanistic understanding of the reactivity and guide the way towards designing more stable systems. A range of electrolytes based on ethers, amides, sulfones, ionic liquids and dimethyl sulfoxide have been investigated. All are more stable than the organic carbonates, but not all are equally stable. Even though it was soon realised, by a number of groups, that ethers exhibit side reactions on discharge and charge, they still remain the choice in many studies. To date dimethyl sulfoxide and dimethylacetamide were identified as the most stable electrolytes. In conjunction with the investigation of electrolyte stability the importance of electrode stability became more prominent. The stability of the electrolyte cannot be considered in isolation. Its stability depends on the synergy between electrolyte and electrode. Carbon based electrodes promote electrolyte decomposition and decompose on their own. Although great progress has been made in only a few years, future work on aprotic electrolytes for Li-O2 batteries will need to explore other electrolytes in the quest for yet lower cost, higher safety, stability and low volatility.}, author = {Freunberger, Stefan Alexander and Chen, Yuhui and Bardé, Fanny and Takechi, Kensuke and Mizuno, Fuminori and Bruce, Peter G.}, booktitle = {The Lithium Air Battery: Fundamentals}, editor = {Imanishi, Nobuyuki and Luntz, Alan C. and Bruce, Peter}, isbn = {9781489980618}, pages = {23--58}, publisher = {Springer Nature}, title = {{Nonaqueous Electrolytes}}, doi = {10.1007/978-1-4899-8062-5_2}, year = {2014}, } @article{7302, abstract = {Understanding charge carrier transport in Li2O2, the storage material in the non-aqueous Li-O2 battery, is key to the development of this high-energy battery. Here, we studied ionic transport properties and Li self-diffusion in nanocrystalline Li2O2 by conductivity and temperature variable 7Li NMR spectroscopy. Nanostructured Li2O2, characterized by a mean crystallite size of less than 50 nm as estimated from X-ray diffraction peak broadening, was prepared by high-energy ball milling of microcrystalline lithium peroxide with μm sized crystallites. At room temperature the overall conductivity σ of the microcrystalline reference sample turned out to be very low (3.4 × 10−13 S cm−1) which is in agreement with results from temperature-variable 7Li NMR line shape measurements. Ball-milling, however, leads to an increase of σ by approximately two orders of magnitude (1.1 × 10−10 S cm−1); correspondingly, the activation energy decreases from 0.89 eV to 0.82 eV. The electronic contribution σeon, however, is in the order of 9 × 10−12 S cm−1 which makes less than 10% of the total value. Interestingly, 7Li NMR lines of nano-Li2O2 undergo pronounced heterogeneous motional narrowing which manifests in a two-component line shape emerging with increasing temperatures. Most likely, the enhancement in σ can be traced back to the generation of a spin reservoir with highly mobile Li ions; these are expected to reside in the nearest neighbourhood of defects generated or near the structurally disordered and defect-rich interfacial regions formed during mechanical treatment.}, author = {Dunst, A. and Epp, V. and Hanzu, I. and Freunberger, Stefan Alexander and Wilkening, M.}, issn = {1754-5692}, journal = {Energy & Environmental Science}, number = {8}, pages = {2739--2752}, publisher = {RSC}, title = {{Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2—the discharge product in lithium-air batteries}}, doi = {10.1039/c4ee00496e}, volume = {7}, year = {2014}, } @article{7305, abstract = {When lithium–oxygen batteries discharge, O2 is reduced at the cathode to form solid Li2O2. Understanding the fundamental mechanism of O2 reduction in aprotic solvents is therefore essential to realizing their technological potential. Two different models have been proposed for Li2O2 formation, involving either solution or electrode surface routes. Here, we describe a single unified mechanism, which, unlike previous models, can explain O2 reduction across the whole range of solvents and for which the two previous models are limiting cases. We observe that the solvent influences O2 reduction through its effect on the solubility of LiO2, or, more precisely, the free energy of the reaction LiO2* ⇌ Li(sol)+ + O2−(sol) + ion pairs + higher aggregates (clusters). The unified mechanism shows that low-donor-number solvents are likely to lead to premature cell death, and that the future direction of research for lithium–oxygen batteries should focus on the search for new, stable, high-donor-number electrolytes, because they can support higher capacities and can better sustain discharge.}, author = {Johnson, Lee and Li, Chunmei and Liu, Zheng and Chen, Yuhui and Freunberger, Stefan Alexander and Ashok, Praveen C. and Praveen, Bavishna B. and Dholakia, Kishan and Tarascon, Jean-Marie and Bruce, Peter G.}, issn = {1755-4330}, journal = {Nature Chemistry}, number = {12}, pages = {1091--1099}, publisher = {Springer Nature}, title = {{The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries}}, doi = {10.1038/nchem.2101}, volume = {6}, year = {2014}, } @article{7304, abstract = {Lithium-air batteries have received extraordinary attention recently owing to their theoretical gravimetric energies being considerably higher than those of Li-ion batteries. There are, however, significant challenges to practical implementation, including low energy efficiency, cycle life, and power capability. These are due primarily to the lack of fundamental understanding of oxygen reduction and evolution reaction kinetics and parasitic reactions between oxygen redox intermediate species and nominally inactive battery components such as carbon in the oxygen electrode and electrolytes. In this article, we discuss recent advances in the mechanistic understanding of oxygen redox reactions in nonaqueous electrolytes and the search for electrolytes and electrode materials that are chemically stable in the oxygen electrode. In addition, methods to protect lithium metal against corrosion by water and dendrite formation in aqueous lithium-air batteries are discussed. Further materials innovations lie at the heart of research and development efforts that are needed to enable the development of lithium-oxygen batteries with enhanced round-trip efficiency and cycle life.}, author = {Kwabi, D.G. and Ortiz-Vitoriano, N. and Freunberger, Stefan Alexander and Chen, Y. and Imanishi, N. and Bruce, P.G. and Shao-Horn, Y.}, issn = {0883-7694}, journal = {MRS Bulletin}, number = {5}, pages = {443--452}, publisher = {CUP}, title = {{Materials challenges in rechargeable lithium-air batteries}}, doi = {10.1557/mrs.2014.87}, volume = {39}, year = {2014}, } @article{7301, abstract = {Several problems arise at the O2 (positive) electrode in the Li-air battery, including solvent/electrode decomposition and electrode passivation by insulating Li2O2. Progress partially depends on exploring the basic electrochemistry of O2 reduction. Here we describe the effect of complexing-cations on the electrochemical reduction of O2 in DMSO in the presence and absence of a Li salt. The solubility of alkaline peroxides in DMSO is enhanced by the complexing-cations, consistent with their strong interaction with reduced O2. The complexing-cations also increase the rate of the 1-electron O2 reduction to O2•– by up to six-fold (k° = 2.4 ×10–3 to 1.5 × 10–2 cm s–1) whether or not Li+ ions are present. In the absence of Li+, the complexing-cations also promote the reduction of O2•– to O22–. In the presence of Li+ and complexing-cations, and despite the interaction of the reduced O2 with the latter, SERS confirms that the product is still Li2O2.}, author = {Li, Chunmei and Fontaine, Olivier and Freunberger, Stefan Alexander and Johnson, Lee and Grugeon, Sylvie and Laruelle, Stéphane and Bruce, Peter G. and Armand, Michel}, issn = {1932-7447}, journal = {The Journal of Physical Chemistry C}, number = {7}, pages = {3393--3401}, publisher = {ACS}, title = {{Aprotic Li–O2 battery: Influence of complexing agents on oxygen reduction in an aprotic solvent}}, doi = {10.1021/jp4093805}, volume = {118}, year = {2014}, } @article{7300, abstract = {Photoinduced electron transfer (PET), which causes pH-dependent quenching of fluorescent dyes, is more effectively introduced by phenolic groups than by amino groups which have been much more commonly used so far. That is demonstrated by fluorescence measurements involving several classes of fluorophores. Electrochemical measurements show that PET in several amino-modified dyes is thermodynamically favorable, even though it was not experimentally found, underlining the importance of kinetic aspects to the process. Consequently, the attachment of phenolic groups allows for fast and simple preparation of a wide selection of fluorescent pH-probes with tailor-made spectral properties, sensitive ranges, and individual advantages, so that a large number of applications can be realized. Fluorophores carrying phenolic groups may also be used for sensing analytes other than pH or molecular switching and signaling.}, author = {Aigner, Daniel and Freunberger, Stefan Alexander and Wilkening, Martin and Saf, Robert and Borisov, Sergey M. and Klimant, Ingo}, issn = {0003-2700}, journal = {Analytical Chemistry}, number = {18}, pages = {9293--9300}, publisher = {ACS}, title = {{Enhancing photoinduced electron transfer efficiency of fluorescent pH-probes with halogenated phenols}}, doi = {10.1021/ac502513g}, volume = {86}, year = {2014}, } @article{7361, abstract = {Bistable switches are fundamental regulatory elements of complex systems, ranging from electronics to living cells. Designed genetic toggle switches have been constructed from pairs of natural transcriptional repressors wired to inhibit one another. The complexity of the engineered regulatory circuits can be increased using orthogonal transcriptional regulators based on designed DNA-binding domains. However, a mutual repressor-based toggle switch comprising DNA-binding domains of transcription-activator-like effectors (TALEs) did not support bistability in mammalian cells. Here, the challenge of engineering a bistable switch based on monomeric DNA-binding domains is solved via the introduction of a positive feedback loop composed of activators based on the same TALE domains as their opposing repressors and competition for the same DNA operator site. This design introduces nonlinearity and results in epigenetic bistability. This principle could be used to employ other monomeric DNA-binding domains such as CRISPR for applications ranging from reprogramming cells to building digital biological memory.}, author = {Lebar, Tina and Bezeljak, Urban and Golob, Anja and Jerala, Miha and Kadunc, Lucija and Pirš, Boštjan and Stražar, Martin and Vučko, Dušan and Zupančič, Uroš and Benčina, Mojca and Forstnerič, Vida and Gaber, Rok and Lonzarić, Jan and Majerle, Andreja and Oblak, Alja and Smole, Anže and Jerala, Roman}, issn = {2041-1723}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{A bistable genetic switch based on designable DNA-binding domains}}, doi = {10.1038/ncomms6007}, volume = {5}, year = {2014}, } @article{7455, abstract = {The reaction between NiO and (0001)- and ([1\bar102])-oriented Al2O3 single crystals has been investigated on model experimental systems by using the ReflEXAFS technique. Depth-sensitive information is obtained by collecting data above and below the critical angle for total reflection. A systematic protocol for data analysis, based on the recently developed CARD code, was implemented, and a detailed description of the reactive systems was obtained. In particular, for ([1\bar102])-oriented Al2O3, the reaction with NiO is almost complete after heating for 6 h at 1273 K, and an almost uniform layer of spinel is found below a mixed (NiO + spinel) layer at the very upmost part of the sample. In the case of the (0001)-oriented Al2O3, for the same temperature and heating time, the reaction shows a lower advancement degree and a residual fraction of at least 30% NiO is detected in the ReflEXAFS spectra. }, author = {Costanzo, Tommaso and Benzi, Federico and Ghigna, Paolo and Pin, Sonia and Spinolo, Giorgio and d'Acapito, Francesco}, issn = {1600-5775}, journal = {Journal of Synchrotron Radiation}, number = {2}, pages = {395--400}, publisher = {International Union of Crystallography}, title = {{Studying the surface reaction between NiO and Al2O3viatotal reflection EXAFS (ReflEXAFS)}}, doi = {10.1107/s1600577513031299}, volume = {21}, year = {2014}, } @article{7598, author = {Tan, Shutang and Xue, Hong-Wei}, issn = {2211-1247}, journal = {Cell Reports}, number = {5}, pages = {1692--1702}, publisher = {Elsevier}, title = {{Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5}}, doi = {10.1016/j.celrep.2014.10.047}, volume = {9}, year = {2014}, } @inproceedings{768, abstract = {Task allocation is a classic distributed problem in which a set of p potentially faulty processes must cooperate to perform a set of tasks. This paper considers a new dynamic version of the problem, in which tasks are injected adversarially during an asynchronous execution. We give the first asynchronous shared-memory algorithm for dynamic task allocation, and we prove that our solution is optimal within logarithmic factors. The main algorithmic idea is a randomized concurrent data structure called a dynamic to-do tree, which allows processes to pick new tasks to perform at random from the set of available tasks, and to insert tasks at random empty locations in the data structure. Our analysis shows that these properties avoid duplicating work unnecessarily. On the other hand, since the adversary controls the input as well the scheduling, it can induce executions where lots of processes contend for a few available tasks, which is inefficient. However, we prove that every algorithm has the same problem: given an arbitrary input, if OPT is the worst-case complexity of the optimal algorithm on that input, then the expected work complexity of our algorithm on the same input is O(OPT log3 m), where m is an upper bound on the number of tasks that are present in the system at any given time.}, author = {Alistarh, Dan-Adrian and Aspnes, James and Bender, Michael and Gelashvili, Rati and Gilbert, Seth}, pages = {416 -- 435}, publisher = {SIAM}, title = {{Dynamic task allocation in asynchronous shared memory}}, doi = {10.1137/1.9781611973402.31}, year = {2014}, } @article{769, abstract = {This article presents the first tight bounds on the time complexity of shared-memory renaming, a fundamental problem in distributed computing in which a set of processes need to pick distinct identifiers from a small namespace. We first prove an individual lower bound of ω(k) process steps for deterministic renaming into any namespace of size subexponential in k, where k is the number of participants. The bound is tight: it draws an exponential separation between deterministic and randomized solutions, and implies new tight bounds for deterministic concurrent fetch-and-increment counters, queues, and stacks. The proof is based on a new reduction from renaming to another fundamental problem in distributed computing: mutual exclusion. We complement this individual bound with a global lower bound of ω(klog(k/c)) on the total step complexity of renaming into a namespace of size ck, for any c = 1. This result applies to randomized algorithms against a strong adversary, and helps derive new global lower bounds for randomized approximate counter implementations, that are tight within logarithmic factors. On the algorithmic side, we give a protocol that transforms any sorting network into a randomized strong adaptive renaming algorithm, with expected cost equal to the depth of the sorting network. This gives a tight adaptive renaming algorithm with expected step complexity O(log k), where k is the contention in the current execution. This algorithm is the first to achieve sublinear time, and it is time-optimal as per our randomized lower bound. Finally, we use this renaming protocol to build monotone-consistent counters with logarithmic step complexity and linearizable fetch-and-increment registers with polylogarithmic cost.}, author = {Alistarh, Dan-Adrian and Aspnes, James and Censor Hillel, Keren and Gilbert, Seth and Guerraoui, Rachid}, journal = {Journal of the ACM}, number = {3}, publisher = {ACM}, title = {{Tight bounds for asynchronous renaming}}, doi = {10.1145/2597630}, volume = {61}, year = {2014}, } @inproceedings{770, abstract = {Dynamic memory reclamation is arguably the biggest open problem in concurrent data structure design: All known solutions induce high overhead, or must be customized to the specific data structure by the programmer, or both. This paper presents StackTrack, the first concurrent memory reclamation scheme that can be applied automatically by a compiler, while maintaining efficiency. StackTrack eliminates most of the expensive bookkeeping required for memory reclamation by leveraging the power of hardware transactional memory (HTM) in a new way: it tracks thread variables dynamically, and in an atomic fashion. This effectively makes all memory references visible without having threads pay the overhead of writing out this information. Our empirical results show that this new approach matches or outperforms prior, non-automated, techniques.}, author = {Alistarh, Dan-Adrian and Eugster, Patrick and Herlihy, Maurice and Matveev, Alexander and Shavit, Nir}, publisher = {ACM}, title = {{StackTrack: An automated transactional approach to concurrent memory reclamation}}, doi = {10.1145/2592798.2592808}, year = {2014}, } @inproceedings{771, abstract = {We consider the following natural problem: n failure-prone servers, communicating synchronously through message passing, must assign themselves one-to-one to n distinct items. Existing literature suggests two possible approaches to this problem. First, model it as an instance of tight renaming in synchronous message-passing systems; for deterministic solutions, a tight bound of ©(logn) communication rounds is known. Second, model the scenario as an instance of randomized load-balancing, for which elegant sub-logarithmic solutions exist. However, careful examination reveals that known load-balancing schemes do not apply to our scenario, because they either do not tolerate faults or do not ensure one-to-one allocation. It is thus natural to ask if sublogarithmic solutions exist for this apparently simple but intriguing problem. In this paper, we combine the two approaches to provide a new randomized solution for tight renaming, which terminates in O (log log n) communication rounds with high probability, against a strong adaptive adversary. Our solution, called Balls-into-Leaves, combines the deterministic approach with a new randomized scheme to obtain perfectly balanced allocations. The algorithm arranges the items as leaves of a tree, and participants repeatedly perform random choices among the leaves. The algorithm exchanges information in each round to split the participants into progressively smaller groups whose random choices do not conflict. We then extend the algorithm to terminate early in O(log log) rounds w.h.p., where is the actual number of failures. These results imply an exponential separation between deterministic and randomized algorithms for the tight renaming problem in message-passing systems.}, author = {Alistarh, Dan-Adrian and Denysyuk, Oksana and Rodrígues, Luís and Shavit, Nir}, pages = {232 -- 241}, publisher = {ACM}, title = {{Balls-into-Leaves: Sub-logarithmic renaming in synchronous message-passing systems}}, doi = {10.1145/2611462.2611499}, year = {2014}, } @inproceedings{772, abstract = {Lock-free concurrent algorithms guarantee that some concurrent operation will always make progress in a finite number of steps. Yet programmers prefer to treat concurrent code as if it were wait-free, guaranteeing that all operations always make progress. Unfortunately, designing wait-free algorithms is generally a very complex task, and the resulting algorithms are not always efficient. While obtaining efficient wait-free algorithms has been a long-time goal for the theory community, most non-blocking commercial code is only lock-free. This paper suggests a simple solution to this problem. We show that, for a large class of lock-free algorithms, under scheduling conditions which approximate those found in commercial hardware architectures, lock-free algorithms behave as if they are wait-free. In other words, programmers can keep on designing simple lock-free algorithms instead of complex wait-free ones, and in practice, they will get wait-free progress. Our main contribution is a new way of analyzing a general class of lock-free algorithms under a stochastic scheduler. Our analysis relates the individual performance of processes with the global performance of the system using Markov chain lifting between a complex per-process chain and a simpler system progress chain. We show that lock-free algorithms are not only wait-free with probability 1, but that in fact a general subset of lock-free algorithms can be closely bounded in terms of the average number of steps required until an operation completes. To the best of our knowledge, this is the first attempt to analyze progress conditions, typically stated in relation to a worst case adversary, in a stochastic model capturing their expected asymptotic behavior.}, author = {Alistarh, Dan-Adrian and Censor Hillel, Keren and Shavit, Nir}, pages = {714 -- 723}, publisher = {ACM}, title = {{Are lock-free concurrent algorithms practically wait-free?}}, doi = {10.1145/2591796.2591836}, year = {2014}, } @inproceedings{773, abstract = {We describe a new randomized consensus protocol with expected message complexity O(n2log2n) when fewer than n/2 processes may fail by crashing. This is an almost-linear improvement over the best previously known protocol, and within logarithmic factors of a known Ω(n2) message lower bound. The protocol further ensures that no process sends more than O(n log3n) messages in expectation, which is again within logarithmic factors of optimal.We also present a generalization of the algorithm to an arbitrary number of failures t, which uses expected O(nt + t2log2t) total messages. Our protocol uses messages of size O(log n), and can therefore scale to large networks. We consider the problem of consensus in the challenging classic model. In this model, the adversary is adaptive; it can choose which processors crash at any point during the course of the algorithm. Further, communication is via asynchronous message passing: there is no known upper bound on the time to send a message from one processor to another, and all messages and coin flips are seen by the adversary. Our approach is to build a message-efficient, resilient mechanism for aggregating individual processor votes, implementing the message-passing equivalent of a weak shared coin. Roughly, in our protocol, a processor first announces its votes to small groups, then propagates them to increasingly larger groups as it generates more and more votes. To bound the number of messages that an individual process might have to send or receive, the protocol progressively increases the weight of generated votes. The main technical challenge is bounding the impact of votes that are still “in flight” (generated, but not fully propagated) on the final outcome of the shared coin, especially since such votes might have different weights. We achieve this by leveraging the structure of the algorithm, and a technical argument based on martingale concentration bounds. Overall, we show that it is possible to build an efficient message-passing implementation of a shared coin, and in the process (almost-optimally) solve the classic consensus problem in the asynchronous message-passing model.}, author = {Alistarh, Dan-Adrian and Aspnes, James and King, Valerie and Saia, Jared}, editor = {Kuhn, Fabian}, location = {Austin, USA}, pages = {61 -- 75}, publisher = {Springer}, title = {{Communication-efficient randomized consensus}}, doi = {10.1007/978-3-662-45174-8_5}, volume = {8784}, year = {2014}, } @inproceedings{774, abstract = {Lock-free concurrent algorithms guarantee that some concurrent operation will always make progress in a finite number of steps. Yet programmers would prefer to treat concurrent code as if it were wait-free, guaranteeing that all operations always make progress. Unfortunately, designing wait-free algorithms is in general a complex undertaking, and the resulting algorithms are not always efficient, so most non-blocking commercial code is only lock-free, and the design of efficient wait-free algorithms has been left to the academic community. In [2], we suggest a solution to this problem. We show that, for a large class of lock-free algorithms, under scheduling conditions which approximate those found in commercial hardware architectures, lock-free algorithms behave as if they are wait-free. In other words, programmers can keep on designing simple lock-free algorithms instead of complex wait-free ones, and in practice, they will get wait-free progress. Our main contribution is a new way of analyzing a general class of lock-free algorithms under a stochastic scheduler. Our analysis relates the individual performance of processes with the global performance of the system using Markov chain lifting between a complex per-process chain and a simpler system progress chain. We show that lock-free algorithms are not only wait-free with probability 1, but that in fact a broad subset of lock-free algorithms can be closely bounded in terms of the average number of steps required until an operation completes.}, author = {Alistarh, Dan-Adrian and Censor Hille, Keren and Shavit, Nir}, pages = {50 -- 52}, publisher = {ACM}, title = {{Brief announcement: Are lock-free concurrent algorithms practically wait-free?}}, doi = {10.1145/2611462.2611502}, year = {2014}, } @inproceedings{775, abstract = {The long-lived renaming problem appears in shared-memory systems where a set of threads need to register and deregister frequently from the computation, while concurrent operations scan the set of currently registered threads. Instances of this problem show up in concurrent implementations of transactional memory, flat combining, thread barriers, and memory reclamation schemes for lock-free data structures. In this paper, we analyze a randomized solution for long-lived renaming. The algorithmic technique we consider, called the Level Array, has previously been used for hashing and one-shot (single-use) renaming. Our main contribution is to prove that, in long-lived executions, where processes may register and deregister polynomially many times, the technique guarantees constant steps on average and O (log log n) steps with high probability for registering, unit cost for deregistering, and O (n) steps for collect queries, where n is an upper bound on the number of processes that may be active at any point in time. We also show that the algorithm has the surprising property that it is self-healing: under reasonable assumptions on the schedule, operations running while the data structure is in a degraded state implicitly help the data structure re-balance itself. This subtle mechanism obviates the need for expensive periodic rebuilding procedures. Our benchmarks validate this approach, showing that, for typical use parameters, the average number of steps a process takes to register is less than two and the worst-case number of steps is bounded by six, even in executions with billions of operations. We contrast this with other randomized implementations, whose worst-case behavior we show to be unreliable, and with deterministic implementations, whose cost is linear in n.}, author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Matveev, Alexander and Shavit, Nir}, pages = {348 -- 357}, publisher = {IEEE}, title = {{The levelarray: A fast, practical long-lived renaming algorithm}}, doi = {10.1109/ICDCS.2014.43}, year = {2014}, } @inbook{7743, abstract = {Experimental studies have demonstrated that environmental variation can create genotype‐environment interactions (GEIs) in the traits involved in sexual selection. Understanding the genetic architecture of phenotype across environments will require statistical tests that can describe both changes in genetic variance and covariance across environments. This chapter outlines the theoretical framework for the processes of sexual selection in the wild, identifying key parameters in wild systems, and highlighting the potential effects of the environment. It describes the proposed approaches for the estimation of these key parameters in a quantitative genetic framework within naturally occurring pedigreed populations. The chapter provides a worked example for a range of analysis methods. It aims to provide an overview of the analytical methods that can be used to model GEIs for traits involved in sexual selection in naturally occurring pedigreed populations.}, author = {Robinson, Matthew Richard and Qvarnström, Anna}, booktitle = {Genotype-by-Environment Interactions and Sexual Selection}, editor = {Hunt, John and Hosken, David}, isbn = {9780470671795}, pages = {137--168}, publisher = {Wiley}, title = {{Influence of the environment on the genetic architecture of traits involved in sexual selection within wild populations}}, doi = {10.1002/9781118912591.ch6}, year = {2014}, } @article{7744, author = {Robinson, Matthew Richard and Wray, Naomi R. and Visscher, Peter M.}, issn = {0168-9525}, journal = {Trends in Genetics}, number = {4}, pages = {124--132}, publisher = {Elsevier}, title = {{Explaining additional genetic variation in complex traits}}, doi = {10.1016/j.tig.2014.02.003}, volume = {30}, year = {2014}, } @article{7768, abstract = {We investigate the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions as a function of packing fraction. Certain properties of the vibrational density of states (vDOS) are shown to correlate with the density and structure of the samples (i.e., in sparsely versus densely packed samples). Specifically, a crossover from dense glassy to sparse gel-like states is suggested by an excess of phonon modes at low frequency and by a variation in the slope of the vDOS with frequency at low frequency. This change in phonon mode distribution is demonstrated to arise largely from localized vibrations that involve individual and/or small clusters of particles with few local bonds. Conventional order parameters and void statistics did not exhibit obvious gel-glass signatures as a function of volume fraction. These mode behaviors and accompanying structural insights offer a potentially new set of indicators for identification of glass-gel transitions and for assignment of gel-like versus glass-like character to a disordered solid material.}, author = {Lohr, Matthew A. and Still, Tim and Ganti, Raman and Gratale, Matthew D. and Davidson, Zoey S. and Aptowicz, Kevin B. and Goodrich, Carl Peter and Sussman, Daniel M. and Yodh, A. G.}, issn = {1539-3755}, journal = {Physical Review E}, number = {6}, publisher = {American Physical Society}, title = {{Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings}}, doi = {10.1103/physreve.90.062305}, volume = {90}, year = {2014}, } @article{7771, abstract = {In their Letter, Schreck, Bertrand, O'Hern and Shattuck [Phys. Rev. Lett. 107, 078301 (2011)] study nonlinearities in jammed particulate systems that arise when contacts are altered. They conclude that there is "no harmonic regime in the large system limit for all compressions" and "at jamming onset for any system size." Their argument rests on the claim that for finite-range repulsive potentials, of the form used in studies of jamming, the breaking or forming of a single contact is sufficient to destroy the linear regime. We dispute these conclusions and argue that linear response is both justified and essential for understanding the nature of the jammed solid. }, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {4}, publisher = {American Physical Society}, title = {{Comment on “Repulsive contact interactions make jammed particulate systems inherently nonharmonic”}}, doi = {10.1103/physrevlett.112.049801}, volume = {112}, year = {2014}, } @article{7772, abstract = {Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk, B, and shear, G, moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and variation of the ratio G/B with packing fraction is found to agree quantitatively with predictions for jammed packings of frictional soft particles. In addition, G and B individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract an energy scale for the interparticle interaction from the individual elastic constants and to derive an approximate estimate for the interparticle friction coefficient.}, author = {Still, Tim and Goodrich, Carl Peter and Chen, Ke and Yunker, Peter J. and Schoenholz, Samuel and Liu, Andrea J. and Yodh, A. G.}, issn = {1539-3755}, journal = {Physical Review E}, number = {1}, publisher = {American Physical Society}, title = {{Phonon dispersion and elastic moduli of two-dimensional disordered colloidal packings of soft particles with frictional interactions}}, doi = {10.1103/physreve.89.012301}, volume = {89}, year = {2014}, } @article{7773, abstract = {For more than a century, physicists have described real solids in terms of perturbations about perfect crystalline order1. Such an approach takes us only so far: a glass, another ubiquitous form of rigid matter, cannot be described in any meaningful sense as a defected crystal2. Is there an opposite extreme to a crystal—a solid with complete disorder—that forms an alternative starting point for understanding real materials? Here, we argue that the solid comprising particles with finite-ranged interactions at the jamming transition3,4,5 constitutes such a limit. It has been shown that the physics associated with this transition can be extended to interactions that are long ranged6. We demonstrate that jamming physics is not restricted to amorphous systems, but dominates the behaviour of solids with surprisingly high order. Just as the free-electron and tight-binding models represent two idealized cases from which to understand electronic structure1, we identify two extreme limits of mechanical behaviour. Thus, the physics of jamming can be set side by side with the physics of crystals to provide an organizing structure for understanding the mechanical properties of solids over the entire spectrum of disorder.}, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {1745-2473}, journal = {Nature Physics}, number = {8}, pages = {578--581}, publisher = {Springer Nature}, title = {{Solids between the mechanical extremes of order and disorder}}, doi = {10.1038/nphys3006}, volume = {10}, year = {2014}, } @article{7769, abstract = {Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response.}, author = {Goodrich, Carl Peter and Dagois-Bohy, Simon and Tighe, Brian P. and van Hecke, Martin and Liu, Andrea J. and Nagel, Sidney R.}, issn = {1539-3755}, journal = {Physical Review E}, number = {2}, publisher = {American Physical Society}, title = {{Jamming in finite systems: Stability, anisotropy, fluctuations, and scaling}}, doi = {10.1103/physreve.90.022138}, volume = {90}, year = {2014}, } @article{7770, abstract = {Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit.}, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {1539-3755}, journal = {Physical Review E}, number = {2}, publisher = {American Physical Society}, title = {{Contact nonlinearities and linear response in jammed particulate packings}}, doi = {10.1103/physreve.90.022201}, volume = {90}, year = {2014}, } @article{8021, abstract = {Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons. }, author = {Araya, R. and Vogels, Tim P and Yuste, R.}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {28}, pages = {E2895--E2904}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Activity-dependent dendritic spine neck changes are correlated with synaptic strength}}, doi = {10.1073/pnas.1321869111}, volume = {111}, year = {2014}, } @article{8023, abstract = {Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a study of triplet connectivity statistics and a data set measuring neuronal responses to channelrhodopsin stimuli, to evaluate the fidelity of thousands of model networks. Network architectures comprised three neuron types (excitatory, fast spiking, and nonfast spiking inhibitory) and were created from a set of rules that govern the statistics of the resulting connection types. In a high-dimensional parameter scan, we varied the degree distributions (i.e., how many cells each neuron connects with) and the synaptic weight correlations of synapses from or onto the same neuron. These variations converted initially uniform random and homogeneously connected networks, in which every neuron sent and received equal numbers of synapses with equal synaptic strength distributions, to highly heterogeneous networks in which the number of synapses per neuron, as well as average synaptic strength of synapses from or to a neuron were variable. By evaluating the impact of each variable on the network structure and dynamics, and their similarity to the experimental data, we could falsify the uniform random sparse connectivity hypothesis for 7 of 36 connectivity parameters, but we also confirmed the hypothesis in 8 cases. Twenty-one parameters had no substantial impact on the results of the test protocols we used.}, author = {Tomm, Christian and Avermann, Michael and Petersen, Carl and Gerstner, Wulfram and Vogels, Tim P}, issn = {1522-1598}, journal = {Journal of Neurophysiology}, number = {8}, pages = {1801--1814}, publisher = {American Physiological Society}, title = {{Connection-type-specific biases make uniform random network models consistent with cortical recordings}}, doi = {10.1152/jn.00629.2013}, volume = {112}, year = {2014}, }