@misc{8254, abstract = {Here are the research data underlying the publication "Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus)". Further information are summed up in the README document. The files for this record have been updated and are now found in the linked DOI https://doi.org/10.15479/AT:ISTA:9192.}, author = {Arathoon, Louise S}, publisher = {Institute of Science and Technology Austria}, title = {{Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus)}}, doi = {10.15479/AT:ISTA:8254}, year = {2020}, } @article{7541, abstract = {Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site‐controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top‐down nanofabrication and bottom‐up self‐assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain‐relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin–orbit coupling, with a spin–orbit length similar to that of III–V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon.}, author = {Gao, Fei and Wang, Jian-Huan and Watzinger, Hannes and Hu, Hao and Rančić, Marko J. and Zhang, Jie-Yin and Wang, Ting and Yao, Yuan and Wang, Gui-Lei and Kukucka, Josip and Vukušić, Lada and Kloeffel, Christoph and Loss, Daniel and Liu, Feng and Katsaros, Georgios and Zhang, Jian-Jun}, issn = {0935-9648}, journal = {Advanced Materials}, number = {16}, publisher = {Wiley}, title = {{Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling}}, doi = {10.1002/adma.201906523}, volume = {32}, year = {2020}, } @misc{8930, abstract = {Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.}, author = {Kavcic, Bor}, keywords = {Escherichia coli, antibiotic combinations, translation, growth laws, drug interactions, bacterial physiology, translation inhibitors}, publisher = {Institute of Science and Technology Austria}, title = {{Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action"}}, doi = {10.15479/AT:ISTA:8930}, year = {2020}, } @misc{8951, abstract = {Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks.}, author = {Nagy-Staron, Anna A}, keywords = {Gene regulatory networks, Gene expression, Escherichia coli, Synthetic Biology}, publisher = {Institute of Science and Technology Austria}, title = {{Sequences of gene regulatory network permutations for the article "Local genetic context shapes the function of a gene regulatory network"}}, doi = {10.15479/AT:ISTA:8951}, year = {2020}, } @misc{7383, abstract = {Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature.}, author = {Grah, Rok}, keywords = {Matlab scripts, analysis of microfluidics, mathematical model}, publisher = {Institute of Science and Technology Austria}, title = {{Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation}}, doi = {10.15479/AT:ISTA:7383}, year = {2020}, } @misc{9222, author = {Katsaros, Georgios}, publisher = {Institute of Science and Technology Austria}, title = {{Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling}}, doi = {10.15479/AT:ISTA:9222}, year = {2020}, } @phdthesis{8366, abstract = {Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop.}, author = {Guseinov, Ruslan}, isbn = {978-3-99078-010-7}, issn = {2663-337X}, keywords = {computer-aided design, shape modeling, self-morphing, mechanical engineering}, pages = {118}, publisher = {Institute of Science and Technology Austria}, title = {{Computational design of curved thin shells: From glass façades to programmable matter}}, doi = {10.15479/AT:ISTA:8366}, year = {2020}, } @article{8562, abstract = {Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass facades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits. However, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass facades. We propose an interactive, data-driven approach for designing cold bent glass facades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable configurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface.}, author = {Gavriil, Konstantinos and Guseinov, Ruslan and Perez Rodriguez, Jesus and Pellis, Davide and Henderson, Paul M and Rist, Florian and Pottmann, Helmut and Bickel, Bernd}, issn = {1557-7368}, journal = {ACM Transactions on Graphics}, number = {6}, publisher = {Association for Computing Machinery}, title = {{Computational design of cold bent glass façades}}, doi = {10.1145/3414685.3417843}, volume = {39}, year = {2020}, } @article{8203, abstract = {Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 μeV compared to the spin 0 triplet state because of the strong spin–orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits.}, author = {Katsaros, Georgios and Kukucka, Josip and Vukušić, Lada and Watzinger, Hannes and Gao, Fei and Wang, Ting and Zhang, Jian-Jun and Held, Karsten}, issn = {1530-6992}, journal = {Nano Letters}, number = {7}, pages = {5201--5206}, publisher = {American Chemical Society}, title = {{Zero field splitting of heavy-hole states in quantum dots}}, doi = {10.1021/acs.nanolett.0c01466}, volume = {20}, year = {2020}, } @article{8740, abstract = {In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.}, author = {Gridchyn, Igor and Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior}}, doi = {10.7554/eLife.61106}, volume = {9}, year = {2020}, } @misc{8375, abstract = {Supplementary movies showing the following sequences for spatio-temporarily programmed shells: input geometry and actuation time landscape; comparison of morphing processes from a camera recording and a simulation; final actuated shape.}, author = {Guseinov, Ruslan}, publisher = {Institute of Science and Technology Austria}, title = {{Supplementary data for "Computational design of curved thin shells: from glass façades to programmable matter"}}, doi = {10.15479/AT:ISTA:8375}, year = {2020}, } @misc{7689, abstract = {These are the supplementary research data to the publication "Zero field splitting of heavy-hole states in quantum dots". All matrix files have the same format. Within each column the bias voltage is changed. Each column corresponds to either a different gate voltage or magnetic field. The voltage values are given in mV, the current values in pA. Find a specific description in the included Readme file. }, author = {Katsaros, Georgios}, publisher = {Institute of Science and Technology Austria}, title = {{Supplementary data for "Zero field splitting of heavy-hole states in quantum dots"}}, doi = {10.15479/AT:ISTA:7689}, year = {2020}, } @misc{8761, author = {Guseinov, Ruslan}, publisher = {Institute of Science and Technology Austria}, title = {{Supplementary data for "Computational design of cold bent glass façades"}}, doi = {10.15479/AT:ISTA:8761}, year = {2020}, } @misc{8563, abstract = {Supplementary data provided for the provided for the publication: Igor Gridchyn , Philipp Schoenenberger , Joseph O'Neill , Jozsef Csicsvari (2020) Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. Elife.}, author = {Csicsvari, Jozsef L and Gridchyn, Igor and Schönenberger, Philipp}, publisher = {Institute of Science and Technology Austria}, title = {{Optogenetic alteration of hippocampal network activity}}, doi = {10.15479/AT:ISTA:8563}, year = {2020}, } @article{7262, abstract = {Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses.}, author = {Guseinov, Ruslan and McMahan, Connor and Perez Rodriguez, Jesus and Daraio, Chiara and Bickel, Bernd}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {Design, Synthesis and processing, Mechanical engineering, Polymers}, publisher = {Springer Nature}, title = {{Programming temporal morphing of self-actuated shells}}, doi = {10.1038/s41467-019-14015-2}, volume = {11}, year = {2020}, } @misc{14592, abstract = {Cryo-electron microscopy (cryo-EM) of cellular specimens provides insights into biological processes and structures within a native context. However, a major challenge still lies in the efficient and reproducible preparation of adherent cells for subsequent cryo-EM analysis. This is due to the sensitivity of many cellular specimens to the varying seeding and culturing conditions required for EM experiments, the often limited amount of cellular material and also the fragility of EM grids and their substrate. Here, we present low-cost and reusable 3D printed grid holders, designed to improve specimen preparation when culturing challenging cellular samples directly on grids. The described grid holders increase cell culture reproducibility and throughput, and reduce the resources required for cell culturing. We show that grid holders can be integrated into various cryo-EM workflows, including micro-patterning approaches to control cell seeding on grids, and for generating samples for cryo-focused ion beam milling and cryo-electron tomography experiments. Their adaptable design allows for the generation of specialized grid holders customized to a large variety of applications.}, author = {Schur, Florian KM}, publisher = {Institute of Science and Technology Austria}, title = {{STL-files for 3D-printed grid holders described in Fäßler F, Zens B, et al.; 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy}}, doi = {10.15479/AT:ISTA:14592}, year = {2020}, } @inproceedings{7213, abstract = {Persistent homology is a powerful tool in Topological Data Analysis (TDA) to capture the topological properties of data succinctly at different spatial resolutions. For graphical data, the shape, and structure of the neighborhood of individual data items (nodes) are an essential means of characterizing their properties. We propose the use of persistent homology methods to capture structural and topological properties of graphs and use it to address the problem of link prediction. We achieve encouraging results on nine different real-world datasets that attest to the potential of persistent homology-based methods for network analysis.}, author = {Bhatia, Sumit and Chatterjee, Bapi and Nathani, Deepak and Kaul, Manohar}, booktitle = {Complex Networks and their applications VIII}, isbn = {9783030366865}, issn = {18609503}, location = {Lisbon, Portugal}, pages = {27--39}, publisher = {Springer Nature}, title = {{A persistent homology perspective to the link prediction problem}}, doi = {10.1007/978-3-030-36687-2_3}, volume = {881}, year = {2020}, } @inproceedings{10556, abstract = {In this paper, we present the first Asynchronous Distributed Key Generation (ADKG) algorithm which is also the first distributed key generation algorithm that can generate cryptographic keys with a dual (f,2f+1)-threshold (where f is the number of faulty parties). As a result, using our ADKG we remove the trusted setup assumption that the most scalable consensus algorithms make. In order to create a DKG with a dual (f,2f+1)- threshold we first answer in the affirmative the open question posed by Cachin et al. [7] on how to create an Asynchronous Verifiable Secret Sharing (AVSS) protocol with a reconstruction threshold of f+1 0$. Based on the recent work of Ghaffari et al. [FOCS'18], this additive $O(\log\log n)$ factor is conditionally essential. These algorithms can also be shown to run in $O(\log \Delta)$ rounds in the closely related model of CONGESTED CLIQUE, improving upon the state-of-the-art bound of $O(\log^2 \Delta)$ rounds by Censor-Hillel et al. [DISC'17].}, author = {Czumaj, Artur and Davies, Peter and Parter, Merav}, booktitle = {Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020)}, location = {Virtual Event, United States}, number = {7}, pages = {175--185}, publisher = {Association for Computing Machinery}, title = {{Graph sparsification for derandomizing massively parallel computation with low space}}, doi = {10.1145/3350755.3400282}, year = {2020}, } @inproceedings{7636, abstract = {Balanced search trees typically use key comparisons to guide their operations, and achieve logarithmic running time. By relying on numerical properties of the keys, interpolation search achieves lower search complexity and better performance. Although interpolation-based data structures were investigated in the past, their non-blocking concurrent variants have received very little attention so far. In this paper, we propose the first non-blocking implementation of the classic interpolation search tree (IST) data structure. For arbitrary key distributions, the data structure ensures worst-case O(log n + p) amortized time for search, insertion and deletion traversals. When the input key distributions are smooth, lookups run in expected O(log log n + p) time, and insertion and deletion run in expected amortized O(log log n + p) time, where p is a bound on the number of threads. To improve the scalability of concurrent insertion and deletion, we propose a novel parallel rebuilding technique, which should be of independent interest. We evaluate whether the theoretical improvements translate to practice by implementing the concurrent interpolation search tree, and benchmarking it on uniform and nonuniform key distributions, for dataset sizes in the millions to billions of keys. Relative to the state-of-the-art concurrent data structures, the concurrent interpolation search tree achieves performance improvements of up to 15% under high update rates, and of up to 50% under moderate update rates. Further, ISTs exhibit up to 2X less cache-misses, and consume 1.2 -- 2.6X less memory compared to the next best alternative on typical dataset sizes. We find that the results are surprisingly robust to distributional skew, which suggests that our data structure can be a promising alternative to classic concurrent search structures.}, author = {Brown, Trevor A and Prokopec, Aleksandar and Alistarh, Dan-Adrian}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, isbn = {9781450368186}, location = {San Diego, CA, United States}, pages = {276--291}, publisher = {Association for Computing Machinery}, title = {{Non-blocking interpolation search trees with doubly-logarithmic running time}}, doi = {10.1145/3332466.3374542}, year = {2020}, } @inproceedings{8191, abstract = {There has been a significant amount of research on hardware and software support for efficient concurrent data structures; yet, the question of how to build correct, simple, and scalable data structures has not yet been definitively settled. In this paper, we revisit this question from a minimalist perspective, and ask: what is the smallest amount of synchronization required for correct and efficient concurrent search data structures, and how could this minimal synchronization support be provided in hardware? To address these questions, we introduce memory tagging, a simple hardware mechanism which enables the programmer to "tag" a dynamic set of memory locations, at cache-line granularity, and later validate whether the memory has been concurrently modified, with the possibility of updating one of the underlying locations atomically if validation succeeds. We provide several examples showing that this mechanism can enable fast and arguably simple concurrent data structure designs, such as lists, binary search trees, balanced search trees, range queries, and Software Transactional Memory (STM) implementations. We provide an implementation of memory tags in the Graphite multi-core simulator, showing that the mechanism can be implemented entirely at the level of L1 cache, and that it can enable non-trivial speedups versus existing implementations of the above data structures.}, author = {Alistarh, Dan-Adrian and Brown, Trevor A and Singhal, Nandini}, booktitle = {Annual ACM Symposium on Parallelism in Algorithms and Architectures}, isbn = {9781450369350}, location = {Virtual Event, United States}, number = {7}, pages = {37--49}, publisher = {Association for Computing Machinery}, title = {{Memory tagging: Minimalist synchronization for scalable concurrent data structures}}, doi = {10.1145/3350755.3400213}, year = {2020}, } @inproceedings{7635, abstract = {Concurrent programming can be notoriously complex and error-prone. Programming bugs can arise from a variety of sources, such as operation re-reordering, or incomplete understanding of the memory model. A variety of formal and model checking methods have been developed to address this fundamental difficulty. While technically interesting, existing academic methods are still hard to apply to the large codebases typical of industrial deployments, which limits their practical impact.}, author = {Koval, Nikita and Sokolova, Mariia and Fedorov, Alexander and Alistarh, Dan-Adrian and Tsitelov, Dmitry}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP}, isbn = {9781450368186}, location = {San Diego, CA, United States}, pages = {423--424}, publisher = {Association for Computing Machinery}, title = {{Testing concurrency on the JVM with Lincheck}}, doi = {10.1145/3332466.3374503}, year = {2020}, } @inproceedings{8383, abstract = {We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k ≥ 2 processes in a wait-free manner. However, it was unknown whether proofs based on simpler techniques were possible. We explain why this impossibility result cannot be obtained by an extension-based proof and, hence, extension-based proofs are limited in power.}, author = {Alistarh, Dan-Adrian and Aspnes, James and Ellen, Faith and Gelashvili, Rati and Zhu, Leqi}, booktitle = {Proceedings of the 39th Symposium on Principles of Distributed Computing}, isbn = {9781450375825}, location = {Virtual, Italy}, pages = {54--56}, publisher = {Association for Computing Machinery}, title = {{Brief Announcement: Why Extension-Based Proofs Fail}}, doi = {10.1145/3382734.3405743}, year = {2020}, } @article{8385, abstract = {We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth, and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver.}, author = {Sperl, Georg and Narain, Rahul and Wojtan, Christopher J}, issn = {15577368}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Homogenized yarn-level cloth}}, doi = {10.1145/3386569.3392412}, volume = {39}, year = {2020}, } @article{7956, abstract = {When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles.}, author = {Pȩkalski, J. and Rzadkowski, Wojciech and Panagiotopoulos, A. Z.}, issn = {10897690}, journal = {The Journal of chemical physics}, number = {20}, publisher = {AIP Publishing}, title = {{Shear-induced ordering in systems with competing interactions: A machine learning study}}, doi = {10.1063/5.0005194}, volume = {152}, year = {2020}, } @inproceedings{8382, abstract = {We present the first deterministic wait-free long-lived snapshot algorithm, using only read and write operations, that guarantees polylogarithmic amortized step complexity in all executions. This is the first non-blocking snapshot algorithm, using reads and writes only, that has sub-linear amortized step complexity in executions of arbitrary length. The key to our construction is a novel implementation of a 2-component max array object which may be of independent interest.}, author = {Baig, Mirza Ahad and Hendler, Danny and Milani, Alessia and Travers, Corentin}, booktitle = {Proceedings of the 39th Symposium on Principles of Distributed Computing}, isbn = {9781450375825}, location = {Virtual, Italy}, pages = {31--40}, publisher = {Association for Computing Machinery}, title = {{Long-lived snapshots with polylogarithmic amortized step complexity}}, doi = {10.1145/3382734.3406005}, year = {2020}, } @article{7428, abstract = {In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex.}, author = {Ghazaryan, Areg and Lopes, P. L.S. and Hosur, Pavan and Gilbert, Matthew J. and Ghaemi, Pouyan}, issn = {24699969}, journal = {Physical Review B}, number = {2}, publisher = {American Physical Society}, title = {{Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors}}, doi = {10.1103/PhysRevB.101.020504}, volume = {101}, year = {2020}, } @article{8319, abstract = {We demonstrate that releasing atoms into free space from an optical lattice does not deteriorate cavity-generated spin squeezing for metrological purposes. In this work, an ensemble of 500000 spin-squeezed atoms in a high-finesse optical cavity with near-uniform atom-cavity coupling is prepared, released into free space, recaptured in the cavity, and probed. Up to ∼10 dB of metrologically relevant squeezing is retrieved for 700μs free-fall times, and decaying levels of squeezing are realized for up to 3 ms free-fall times. The degradation of squeezing results from loss of atom-cavity coupling homogeneity between the initial squeezed state generation and final collective state readout. A theoretical model is developed to quantify this degradation and this model is experimentally validated.}, author = {Wu, Yunfan and Krishnakumar, Rajiv and Martínez-Rincón, Julián and Malia, Benjamin K. and Hosten, Onur and Kasevich, Mark A.}, issn = {24699934}, journal = {Physical Review A}, number = {1}, publisher = {American Physical Society}, title = {{Retrieval of cavity-generated atomic spin squeezing after free-space release}}, doi = {10.1103/PhysRevA.102.012224}, volume = {102}, year = {2020}, } @article{8766, abstract = {The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in interactive applications as well as in off-line productions — it provides high visual quality with a low computational demand. In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks. Our system is able to animate waves at large scales at interactive frame rates on a commodity PC.}, author = {Jeschke, Stefan and Hafner, Christian and Chentanez, Nuttapong and Macklin, Miles and Müller-Fischer, Matthias and Wojtan, Christopher J}, journal = {Computer Graphics forum}, location = {Online Symposium}, number = {8}, pages = {47--54}, publisher = {Wiley}, title = {{Making procedural water waves boundary-aware}}, doi = {10.1111/cgf.14100}, volume = {39}, year = {2020}, } @article{15055, abstract = {Markov decision processes (MDPs) are the defacto framework for sequential decision making in the presence of stochastic uncertainty. A classical optimization criterion for MDPs is to maximize the expected discounted-sum payoff, which ignores low probability catastrophic events with highly negative impact on the system. On the other hand, risk-averse policies require the probability of undesirable events to be below a given threshold, but they do not account for optimization of the expected payoff. We consider MDPs with discounted-sum payoff with failure states which represent catastrophic outcomes. The objective of risk-constrained planning is to maximize the expected discounted-sum payoff among risk-averse policies that ensure the probability to encounter a failure state is below a desired threshold. Our main contribution is an efficient risk-constrained planning algorithm that combines UCT-like search with a predictor learned through interaction with the MDP (in the style of AlphaZero) and with a risk-constrained action selection via linear programming. We demonstrate the effectiveness of our approach with experiments on classical MDPs from the literature, including benchmarks with an order of 106 states.}, author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Novotný, Petr and Vahala, Jiří}, issn = {2374-3468}, journal = {Proceedings of the 34th AAAI Conference on Artificial Intelligence}, keywords = {General Medicine}, location = {New York, NY, United States}, number = {06}, pages = {9794--9801}, publisher = {Association for the Advancement of Artificial Intelligence}, title = {{Reinforcement learning of risk-constrained policies in Markov decision processes}}, doi = {10.1609/aaai.v34i06.6531}, volume = {34}, year = {2020}, } @article{15057, abstract = {Vaccinia virus–related kinase (VRK) is an evolutionarily conserved nuclear protein kinase. VRK-1, the single Caenorhabditis elegans VRK ortholog, functions in cell division and germline proliferation. However, the role of VRK-1 in postmitotic cells and adult life span remains unknown. Here, we show that VRK-1 increases organismal longevity by activating the cellular energy sensor, AMP-activated protein kinase (AMPK), via direct phosphorylation. We found that overexpression of vrk-1 in the soma of adult C. elegans increased life span and, conversely, inhibition of vrk-1 decreased life span. In addition, vrk-1 was required for longevity conferred by mutations that inhibit C. elegans mitochondrial respiration, which requires AMPK. VRK-1 directly phosphorylated and up-regulated AMPK in both C. elegans and cultured human cells. Thus, our data show that the somatic nuclear kinase, VRK-1, promotes longevity through AMPK activation, and this function appears to be conserved between C. elegans and humans.}, author = {Park, Sangsoon and Artan, Murat and Han, Seung Hyun and Park, Hae-Eun H. and Jung, Yoonji and Hwang, Ara B. and Shin, Won Sik and Kim, Kyong-Tai and Lee, Seung-Jae V.}, issn = {2375-2548}, journal = {Science Advances}, number = {27}, publisher = {American Association for the Advancement of Science}, title = {{VRK-1 extends life span by activation of AMPK via phosphorylation}}, doi = {10.1126/sciadv.aaw7824}, volume = {6}, year = {2020}, } @article{15061, abstract = {The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin–binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+. Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin–binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.}, author = {Pinotsis, Nikos and Zielinska, Karolina and Babuta, Mrigya and Arolas, Joan L. and Kostan, Julius and Khan, Muhammad Bashir and Schreiner, Claudia and Testa Salmazo, Anita P and Ciccarelli, Luciano and Puchinger, Martin and Gkougkoulia, Eirini A. and Ribeiro, Euripedes de Almeida and Marlovits, Thomas C. and Bhattacharya, Alok and Djinovic-Carugo, Kristina}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {36}, pages = {22101--22112}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin}}, doi = {10.1073/pnas.1917269117}, volume = {117}, year = {2020}, } @article{15064, abstract = {We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for Čech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive Čech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.}, author = {Bauer, U. and Edelsbrunner, Herbert and Jablonski, Grzegorz and Mrozek, M.}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {4}, pages = {455--480}, publisher = {Springer Nature}, title = {{Čech-Delaunay gradient flow and homology inference for self-maps}}, doi = {10.1007/s41468-020-00058-8}, volume = {4}, year = {2020}, } @article{15063, abstract = {We consider the least singular value of a large random matrix with real or complex i.i.d. Gaussian entries shifted by a constant z∈C. We prove an optimal lower tail estimate on this singular value in the critical regime where z is around the spectral edge, thus improving the classical bound of Sankar, Spielman and Teng (SIAM J. Matrix Anal. Appl. 28:2 (2006), 446–476) for the particular shift-perturbation in the edge regime. Lacking Brézin–Hikami formulas in the real case, we rely on the superbosonization formula (Comm. Math. Phys. 283:2 (2008), 343–395).}, author = {Cipolloni, Giorgio and Erdös, László and Schröder, Dominik J}, issn = {2690-1005}, journal = {Probability and Mathematical Physics}, keywords = {General Medicine}, number = {1}, pages = {101--146}, publisher = {Mathematical Sciences Publishers}, title = {{Optimal lower bound on the least singular value of the shifted Ginibre ensemble}}, doi = {10.2140/pmp.2020.1.101}, volume = {1}, year = {2020}, } @inproceedings{15059, abstract = {In this paper we present a room temperature radiometer that can eliminate the need of using cryostats in satellite payload reducing its weight and improving reliability. The proposed radiometer is based on an electro-optic upconverter that boosts up microwave photons energy by upconverting them into an optical domain what makes them immune to thermal noise even if operating at room temperature. The converter uses a high-quality factor whispering gallery mode (WGM) resonator providing naturally narrow bandwidth and therefore might be useful for applications like microwave hyperspectral sensing. The upconversion process is explained by providing essential information about photon conversion efficiency and sensitivity. To prove the concept, we describe an experiment which shows state-of-the-art photon conversion efficiency n=10-5 per mW of pump power at the frequency of 80 GHz.}, author = {Wasiak, Michal and Botello, Gabriel Santamaria and Abdalmalak, Kerlos Atia and Sedlmeir, Florian and Rueda Sanchez, Alfredo R and Segovia-Vargas, Daniel and Schwefel, Harald G. L. and Munoz, Luis Enrique Garcia}, booktitle = {14th European Conference on Antennas and Propagation}, location = {Copenhagen, Denmark}, publisher = {IEEE}, title = {{Compact millimeter and submillimeter-wave photonic radiometer for cubesats}}, doi = {10.23919/eucap48036.2020.9135962}, year = {2020}, } @inproceedings{15074, abstract = {We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for the stable orientation problem, which is a special case of the more general locally optimal semi-matching problem. The prior work by Czygrinow et al. (DISC 2012) finds a locally optimal semi-matching in O(Δ⁵) rounds in graphs of maximum degree Δ, which directly implies an algorithm with the same runtime for stable orientations. We improve the runtime to O(Δ⁴) for stable orientations and prove a lower bound of Ω(Δ) rounds.}, author = {Brandt, Sebastian and Keller, Barbara and Rybicki, Joel and Suomela, Jukka and Uitto, Jara}, booktitle = {34th International Symposium on Distributed Computing}, location = {Virtual}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Brief announcement: Efficient load-balancing through distributed token dropping}}, doi = {10.4230/LIPIcs.DISC.2020.40}, volume = {179}, year = {2020}, } @inproceedings{15077, abstract = {We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥ 0, one unit of load is created, and placed at a randomly chosen graph node. In the same step, the chosen node picks a random neighbor, and the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Variants of the above graphical balanced allocation process have been studied previously by Peres, Talwar, and Wieder [Peres et al., 2015], and by Sauerwald and Sun [Sauerwald and Sun, 2015]. These authors left as open the question of characterizing the gap in the case of cycle graphs in the dynamic case, where weights are created during the algorithm’s execution. For this case, the only known upper bound is of 𝒪(n log n), following from a majorization argument due to [Peres et al., 2015], which analyzes a related graphical allocation process. In this paper, we provide an upper bound of 𝒪 (√n log n) on the expected gap of the above process for cycles of length n. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k ≤ n/2. We complement this with a "gap covering" argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We provide analytical and experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.}, author = {Alistarh, Dan-Adrian and Nadiradze, Giorgi and Sabour, Amirmojtaba}, booktitle = {47th International Colloquium on Automata, Languages, and Programming}, location = {Saarbrücken, Germany, Virtual}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Dynamic averaging load balancing on cycles}}, doi = {10.4230/LIPIcs.ICALP.2020.7}, volume = {168}, year = {2020}, } @inproceedings{15082, abstract = {Two plane drawings of geometric graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. For a given set S of 2n points two plane drawings of perfect matchings M1 and M2 (which do not need to be disjoint nor compatible) are disjoint tree-compatible if there exists a plane drawing of a spanning tree T on S which is disjoint compatible to both M1 and M2. We show that the graph of all disjoint tree-compatible perfect geometric matchings on 2n points in convex position is connected if and only if 2n ≥ 10. Moreover, in that case the diameter of this graph is either 4 or 5, independent of n.}, author = {Aichholzer, Oswin and Obmann, Julia and Patak, Pavel and Perz, Daniel and Tkadlec, Josef}, booktitle = {36th European Workshop on Computational Geometry}, location = {Würzburg, Germany, Virtual}, title = {{Disjoint tree-compatible plane perfect matchings}}, year = {2020}, } @article{6748, abstract = {Fitting a function by using linear combinations of a large number N of `simple' components is one of the most fruitful ideas in statistical learning. This idea lies at the core of a variety of methods, from two-layer neural networks to kernel regression, to boosting. In general, the resulting risk minimization problem is non-convex and is solved by gradient descent or its variants. Unfortunately, little is known about global convergence properties of these approaches. Here we consider the problem of learning a concave function f on a compact convex domain Ω⊆ℝd, using linear combinations of `bump-like' components (neurons). The parameters to be fitted are the centers of N bumps, and the resulting empirical risk minimization problem is highly non-convex. We prove that, in the limit in which the number of neurons diverges, the evolution of gradient descent converges to a Wasserstein gradient flow in the space of probability distributions over Ω. Further, when the bump width δ tends to 0, this gradient flow has a limit which is a viscous porous medium equation. Remarkably, the cost function optimized by this gradient flow exhibits a special property known as displacement convexity, which implies exponential convergence rates for N→∞, δ→0. Surprisingly, this asymptotic theory appears to capture well the behavior for moderate values of δ,N. Explaining this phenomenon, and understanding the dependence on δ,N in a quantitative manner remains an outstanding challenge.}, author = {Javanmard, Adel and Mondelli, Marco and Montanari, Andrea}, issn = {1941-7330}, journal = {Annals of Statistics}, number = {6}, pages = {3619--3642}, publisher = {Institute of Mathematical Statistics}, title = {{Analysis of a two-layer neural network via displacement convexity}}, doi = {10.1214/20-AOS1945}, volume = {48}, year = {2020}, } @article{15070, abstract = {This workshop focused on interactions between the various perspectives on the moduli space of Higgs bundles over a Riemann surface. This subject draws on algebraic geometry, geometric topology, geometric analysis and mathematical physics, and the goal was to promote interactions between these various branches of the subject. The main current directions of research were well represented by the participants, and the talks included many from both senior and junior participants.}, author = {Anderson, Lara and Hausel, Tamás and Mazzeo, Rafe and Schaposnik, Laura}, issn = {1660-8933}, journal = {Oberwolfach Reports}, keywords = {Organic Chemistry, Biochemistry}, number = {2}, pages = {1357--1417}, publisher = {European Mathematical Society}, title = {{Geometry and physics of Higgs bundles}}, doi = {10.4171/owr/2019/23}, volume = {16}, year = {2020}, }