@inbook{258,
abstract = {Given a number field k and a projective algebraic variety X defined over k, the question of whether X contains a k-rational point is both very natural and very difficult. In the event that the set X(k) of k-rational points is not empty, one can also ask how the points of X(k) are distributed. Are they dense in X under the Zariski topology? Are they dense in the set.},
author = {Browning, Timothy D},
booktitle = {Arithmetic and Geometry},
pages = {89 -- 113},
publisher = {Cambridge University Press},
title = {{A survey of applications of the circle method to rational points}},
doi = {10.1017/CBO9781316106877.009},
year = {2015},
}
@article{259,
abstract = {The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field },
author = {Timothy Browning and Vishe, Pankaj},
journal = {Geometric and Functional Analysis},
number = {3},
pages = {671 -- 732},
publisher = {Birkhäuser},
title = {{Rational points on cubic hypersurfaces over F_q(t) }},
doi = {10.1007/s00039-015-0328-5},
volume = {25},
year = {2015},
}
@article{260,
author = {Timothy Browning and Dietmann, Rainer and Heath-Brown, Roger},
journal = {Journal of the Institute of Mathematics of Jussieu},
number = {4},
publisher = {Cambridge University Press},
title = {{Erratum Rational points on intersections of cubic and quadric hypersurfaces}},
doi = {10.1017/S1474748014000279},
volume = {14},
year = {2015},
}
@article{7456,
abstract = {The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux–von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.},
author = {Caruntu, Daniela and Rostamzadeh, Taha and Costanzo, Tommaso and Salemizadeh Parizi, Saman and Caruntu, Gabriel},
issn = {2040-3364},
journal = {Nanoscale},
number = {30},
pages = {12955--12969},
publisher = {RSC},
title = {{Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals}},
doi = {10.1039/c5nr00737b},
volume = {7},
year = {2015},
}
@article{7457,
abstract = {A new organic–inorganic ferroelectric hybrid capacitor designed by uniformly incorporating surface modified monodisperse 15 nm ferroelectric BaTiO3 nanocubes into non-polar polymer blends of poly(methyl methacrylate) (PMMA) polymer and acrylonitrile-butadiene-styrene (ABS) terpolymer is described. The investigation of spatial distribution of nanofillers via a non-distractive thermal pulse method illustrates that the surface functionalization of nanocubes plays a key role in the uniform distribution of charge polarization within the polymer matrix. The discharged energy density of the nanocomposite with 30 vol% BaTiO3 nanocubes is ∼44 × 10−3 J cm−3, which is almost six times higher than that of the neat polymer. The facile processing, along with the superior mechanical and electrical properties of the BaTiO3/PMMA–ABS nanocomposites make them suitable for implementation into capacitive electrical energy storage devices.},
author = {Parizi, Saman Salemizadeh and Conley, Gavin and Costanzo, Tommaso and Howell, Bob and Mellinger, Axel and Caruntu, Gabriel},
issn = {2046-2069},
journal = {RSC Advances},
number = {93},
pages = {76356--76362},
publisher = {RSC},
title = {{Fabrication of barium titanate/acrylonitrile-butadiene styrene/poly(methyl methacrylate) nanocomposite films for hybrid ferroelectric capacitors}},
doi = {10.1039/c5ra11347d},
volume = {5},
year = {2015},
}
@article{7739,
abstract = {Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.},
author = {Santure, Anna W. and Poissant, Jocelyn and De Cauwer, Isabelle and van Oers, Kees and Robinson, Matthew Richard and Quinn, John L. and Groenen, Martien A. M. and Visser, Marcel E. and Sheldon, Ben C. and Slate, Jon},
issn = {0962-1083},
journal = {Molecular Ecology},
pages = {6148--6162},
publisher = {Wiley},
title = {{Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations}},
doi = {10.1111/mec.13452},
volume = {24},
year = {2015},
}
@article{7741,
abstract = {Phenotypes expressed in a social context are not only a function of the individual, but can also be shaped by the phenotypes of social partners. These social effects may play a major role in the evolution of cooperative breeding if social partners differ in the quality of care they provide and if individual carers adjust their effort in relation to that of other carers. When applying social effects models to wild study systems, it is also important to explore sources of individual plasticity that could masquerade as social effects. We studied offspring provisioning rates of parents and helpers in a wild population of long-tailed tits Aegithalos caudatus using a quantitative genetic framework to identify these social effects and partition them into genetic, permanent environment and current environment components. Controlling for other effects, individuals were consistent in their provisioning effort at a given nest, but adjusted their effort based on who was in their social group, indicating the presence of social effects. However, these social effects differed between years and social contexts, indicating a current environment effect, rather than indicating a genetic or permanent environment effect. While this study reveals the importance of examining environmental and genetic sources of social effects, the framework we present is entirely general, enabling a greater understanding of potentially important social effects within any ecological population.},
author = {Adams, Mark James and Robinson, Matthew Richard and Mannarelli, Maria-Elena and Hatchwell, Ben J.},
issn = {0962-8452},
journal = {Proceedings of the Royal Society B: Biological Sciences},
number = {1810},
publisher = {The Royal Society},
title = {{Social genetic and social environment effects on parental and helper care in a cooperatively breeding bird}},
doi = {10.1098/rspb.2015.0689},
volume = {282},
year = {2015},
}
@article{7742,
abstract = {Across-nation differences in the mean values for complex traits are common1,2,3,4,5,6,7,8, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10−8; BMI, P < 5.95 × 10−4), and we find an among-population genetic correlation for tall and slender individuals (r = −0.80, 95% CI = −0.95, −0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).},
author = {Robinson, Matthew Richard and Hemani, Gibran and Medina-Gomez, Carolina and Mezzavilla, Massimo and Esko, Tonu and Shakhbazov, Konstantin and Powell, Joseph E and Vinkhuyzen, Anna and Berndt, Sonja I and Gustafsson, Stefan and Justice, Anne E and Kahali, Bratati and Locke, Adam E and Pers, Tune H and Vedantam, Sailaja and Wood, Andrew R and van Rheenen, Wouter and Andreassen, Ole A and Gasparini, Paolo and Metspalu, Andres and Berg, Leonard H van den and Veldink, Jan H and Rivadeneira, Fernando and Werge, Thomas M and Abecasis, Goncalo R and Boomsma, Dorret I and Chasman, Daniel I and de Geus, Eco J C and Frayling, Timothy M and Hirschhorn, Joel N and Hottenga, Jouke Jan and Ingelsson, Erik and Loos, Ruth J F and Magnusson, Patrik K E and Martin, Nicholas G and Montgomery, Grant W and North, Kari E and Pedersen, Nancy L and Spector, Timothy D and Speliotes, Elizabeth K and Goddard, Michael E and Yang, Jian and Visscher, Peter M},
issn = {1061-4036},
journal = {Nature Genetics},
number = {11},
pages = {1357--1362},
publisher = {Springer Nature},
title = {{Population genetic differentiation of height and body mass index across Europe}},
doi = {10.1038/ng.3401},
volume = {47},
year = {2015},
}
@article{7765,
abstract = {We introduce a principle unique to disordered solids wherein the contribution of any bond to one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the contributions of different bonds, this “independent bond-level response” paves the way for the design of real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global perturbations: compression and shear. By applying a bond removal procedure that is both simple and experimentally relevant to remove a very small fraction of bonds, we can drive disordered spring networks to both the incompressible and completely auxetic limits of mechanical behavior.},
author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.},
issn = {0031-9007},
journal = {Physical Review Letters},
number = {22},
publisher = {American Physical Society},
title = {{The principle of independent bond-level response: Tuning by pruning to exploit disorder for global behavior}},
doi = {10.1103/physrevlett.114.225501},
volume = {114},
year = {2015},
}
@article{7766,
abstract = {We study the vibrational properties near a free surface of disordered spring networks derived from jammed sphere packings. In bulk systems, without surfaces, it is well understood that such systems have a plateau in the density of vibrational modes extending down to a frequency scale ω*. This frequency is controlled by ΔZ = 〈Z〉 − 2d, the difference between the average coordination of the spheres and twice the spatial dimension, d, of the system, which vanishes at the jamming transition. In the presence of a free surface we find that there is a density of disordered vibrational modes associated with the surface that extends far below ω*. The total number of these low-frequency surface modes is controlled by ΔZ, and the profile of their decay into the bulk has two characteristic length scales, which diverge as ΔZ−1/2 and ΔZ−1 as the jamming transition is approached.},
author = {Sussman, Daniel M. and Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.},
issn = {1744-683X},
journal = {Soft Matter},
number = {14},
pages = {2745--2751},
publisher = {Royal Society of Chemistry},
title = {{Disordered surface vibrations in jammed sphere packings}},
doi = {10.1039/c4sm02905d},
volume = {11},
year = {2015},
}
@article{7767,
abstract = {We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.},
author = {van Drongelen, Ruben and Pal, Anshuman and Goodrich, Carl Peter and Idema, Timon},
issn = {1539-3755},
journal = {Physical Review E},
number = {3},
publisher = {American Physical Society},
title = {{Collective dynamics of soft active particles}},
doi = {10.1103/physreve.91.032706},
volume = {91},
year = {2015},
}
@unpublished{7779,
abstract = {The fact that a disordered material is not constrained in its properties in
the same way as a crystal presents significant and yet largely untapped
potential for novel material design. However, unlike their crystalline
counterparts, disordered solids are not well understood. One of the primary
obstacles is the lack of a theoretical framework for thinking about disorder
and its relation to mechanical properties. To this end, we study an idealized
system of frictionless athermal soft spheres that, when compressed, undergoes a
jamming phase transition with diverging length scales and clean power-law
signatures. This critical point is the cornerstone of a much larger "jamming
scenario" that has the potential to provide the essential theoretical
foundation necessary for a unified understanding of the mechanics of disordered
solids. We begin by showing that jammed sphere packings have a valid linear
regime despite the presence of "contact nonlinearities." We then investigate
the critical nature of the transition, focusing on diverging length scales and
finite-size effects. Next, we argue that jamming plays the same role for
disordered solids as the perfect crystal plays for crystalline solids. Not only
can it be considered an idealized starting point for understanding disordered
materials, but it can even influence systems that have a relatively high amount
of crystalline order. The behavior of solids can thus be thought of as existing
on a spectrum, with the perfect crystal and the jamming transition at opposing
ends. Finally, we introduce a new principle wherein the contribution of an
individual bond to one global property is independent of its contribution to
another. This principle allows the different global responses of a disordered
system to be manipulated independently and provides a great deal of flexibility
in designing materials with unique, textured and tunable properties.},
author = {Goodrich, Carl Peter},
booktitle = {arXiv:1510.08820},
pages = {242},
title = {{Unearthing the anticrystal: Criticality in the linear response of disordered solids}},
year = {2015},
}
@inproceedings{778,
abstract = {Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the costs of providing concurrency between hardware and software transactions in HyTM are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses. The model allows us to formally quantify and analyze the amount of overhead (instrumentation) caused by the potential presence of software transactions.We prove that (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for very weak progress guarantees, and (2) the instrumentation cost incurred by a hardware transaction in any progressive opaque HyTM is linear in the size of the transaction’s data set.We further describe two implementations which exhibit optimal instrumentation costs for two different progress conditions. In sum, this paper proposes the first formal HyTM model and captures for the first time the trade-off between the degree of hardware-software TM concurrency and the amount of instrumentation overhead.},
author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Kuznetsov, Petr and Ravi, Srivatsan and Shavit, Nir},
pages = {185 -- 199},
publisher = {Springer},
title = {{Inherent limitations of hybrid transactional memory}},
doi = {10.1007/978-3-662-48653-5_13},
volume = {9363},
year = {2015},
}
@inproceedings{780,
abstract = {Population protocols are networks of finite-state agents, interacting randomly, and updating their states using simple rules. Despite their extreme simplicity, these systems have been shown to cooperatively perform complex computational tasks, such as simulating register machines to compute standard arithmetic functions. The election of a unique leader agent is a key requirement in such computational constructions. Yet, the fastest currently known population protocol for electing a leader only has linear convergence time, and it has recently been shown that no population protocol using a constant number of states per node may overcome this linear bound. In this paper, we give the first population protocol for leader election with polylogarithmic convergence time, using polylogarithmic memory states per node. The protocol structure is quite simple: each node has an associated value, and is either a leader (still in contention) or a minion (following some leader). A leader keeps incrementing its value and “defeats” other leaders in one-to-one interactions, and will drop from contention and become a minion if it meets a leader with higher value. Importantly, a leader also drops out if it meets a minion with higher absolute value. While these rules are quite simple, the proof that this algorithm achieves polylogarithmic convergence time is non-trivial. In particular, the argument combines careful use of concentration inequalities with anti-concentration bounds, showing that the leaders’ values become spread apart as the execution progresses, which in turn implies that straggling leaders get quickly eliminated. We complement our analysis with empirical results, showing that our protocol converges extremely fast, even for large network sizes.},
author = {Alistarh, Dan-Adrian and Gelashvili, Rati},
pages = {479 -- 491},
publisher = {Springer},
title = {{Polylogarithmic-time leader election in population protocols}},
doi = {10.1007/978-3-662-47666-6_38},
volume = {9135},
year = {2015},
}
@inproceedings{784,
abstract = {We demonstrate an optical switch design that can scale up to a thousand ports with high per-port bandwidth (25 Gbps+) and low switching latency (40 ns). Our design uses a broadcast and select architecture, based on a passive star coupler and fast tunable transceivers. In addition we employ time division multiplexing to achieve very low switching latency. Our demo shows the feasibility of the switch data plane using a small testbed, comprising two transmitters and a receiver, connected through a star coupler.},
author = {Alistarh, Dan-Adrian and Ballani, Hitesh and Costa, Paolo and Funnell, Adam and Benjamin, Joshua and Watts, Philip and Thomsen, Benn},
isbn = {978-1-4503-3542-3},
location = {London, United Kindgdom},
pages = {367 -- 368},
publisher = {ACM},
title = {{A high-radix, low-latency optical switch for data centers}},
doi = {10.1145/2785956.2790035},
year = {2015},
}
@article{473,
abstract = {We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d 2.},
author = {Lewin, Mathieu and Phan Thanh, Nam and Rougerie, Nicolas},
journal = {Journal de l'Ecole Polytechnique - Mathematiques},
pages = {65 -- 115},
publisher = {Ecole Polytechnique},
title = {{Derivation of nonlinear gibbs measures from many-body quantum mechanics}},
doi = {10.5802/jep.18},
volume = {2},
year = {2015},
}
@article{477,
abstract = {Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7TR) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7TR, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7TR was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7TR enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7TR-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7TR could be a new target for treatment of a variety of inflammatory and immune disorders.},
author = {Holst, Katrin and Guseva, Daria and Schindler, Susann and Sixt, Michael K and Braun, Armin and Chopra, Himpriya and Pabst, Oliver and Ponimaskin, Evgeni},
journal = {Journal of Cell Science},
number = {15},
pages = {2866 -- 2880},
publisher = {Company of Biologists},
title = {{The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells}},
doi = {10.1242/jcs.167999},
volume = {128},
year = {2015},
}
@article{523,
abstract = {We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Randour, Mickael and Raskin, Jean},
journal = {Information and Computation},
number = {6},
pages = {25 -- 52},
publisher = {Elsevier},
title = {{Looking at mean-payoff and total-payoff through windows}},
doi = {10.1016/j.ic.2015.03.010},
volume = {242},
year = {2015},
}
@article{524,
abstract = {We consider concurrent games played by two players on a finite-state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to each transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question of whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show that for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies, or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of turn-based deterministic mean-payoff games) that is not known to be solvable in polynomial time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
journal = {Information and Computation},
number = {6},
pages = {2 -- 24},
publisher = {Elsevier},
title = {{Qualitative analysis of concurrent mean payoff games}},
doi = {10.1016/j.ic.2015.03.009},
volume = {242},
year = {2015},
}
@article{532,
abstract = {Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a “cleave and shuttle” model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3′ UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3′ UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3′ UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3′ UTR functioning as a “signal transducer” to sense and relay cellular signaling in plants.},
author = {Li, Wenyang and Ma, Mengdi and Feng, Ying and Li, Hongjiang and Wang, Yichuan and Ma, Yutong and Li, Mingzhe and An, Fengying and Guo, Hongwei},
journal = {Cell},
number = {3},
pages = {670 -- 683},
publisher = {Cell Press},
title = {{EIN2-directed translational regulation of ethylene signaling in arabidopsis}},
doi = {10.1016/j.cell.2015.09.037},
volume = {163},
year = {2015},
}
@misc{5429,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics.
Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions.
Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {41},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v1-1},
year = {2015},
}
@misc{5430,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean- payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m = O ( n ) ) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a mul- tiplicative factor of ∊ in time O ( n · log( n/∊ )) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O ( n · log( | a · b · n | )) = O ( n · log( n · W )) , when the output is a b , as compared to the previously best known algorithm with running time O ( n 2 · log( n · W )) . Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O ( n 2 · m ) time and the associated decision problem can be solved in O ( n · m ) time, improving the previous known O ( n 3 · m · log( n · W )) and O ( n 2 · m ) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O ( n · log n ) time, improving the previous known O ( n 4 · log( n · W )) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-319-v1-1},
year = {2015},
}
@misc{5431,
abstract = {We consider finite-state concurrent stochastic games, played by k>=2 players for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. We consider reachability objectives that given a target set of states require that some state in the target set is visited, and the dual safety objectives that given a target set require that only states in the target set are visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed.
Our main results are as follows: We show that in two-player zero-sum concurrent stochastic games (with reachability objective for one player and the complementary safety objective for the other player): (i) the optimal bound on the patience of optimal and epsilon-optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. In general we study the class of non-zero-sum games admitting epsilon-Nash equilibria. We show that if there is at least one player with reachability objective, then doubly-exponential patience is needed in general for epsilon-Nash equilibrium strategies, whereas in contrast if all players have safety objectives, then the optimal bound on patience for epsilon-Nash equilibrium strategies is only exponential.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Hansen, Kristoffer},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{The patience of concurrent stochastic games with safety and reachability objectives}},
doi = {10.15479/AT:IST-2015-322-v1-1},
year = {2015},
}
@misc{5432,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability.
Our main results are:
(1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure).
(2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.
},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v1-1},
year = {2015},
}
@misc{5434,
abstract = {DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. DEC-POMDPs have been studied with finite-horizon and infinite-horizon discounted-sum objectives, and there exist solvers both for exact and approximate solutions. In this work we consider Goal-DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new method to solve the problem that extends methods for finite-horizon DEC- POMDPs and the RTDP-Bel approach for POMDPs. We present experimental results on several examples, and show our approach presents promising results.},
author = {Anonymous, 1 and Anonymous, 2},
issn = {2664-1690},
pages = {16},
publisher = {IST Austria},
title = {{Optimal cost indefinite-horizon reachability in goal DEC-POMDPs}},
year = {2015},
}
@misc{5435,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP.
We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {51},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v2-1},
year = {2015},
}
@misc{5436,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time.
In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2015-170-v2-2},
year = {2015},
}
@misc{5437,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let $n$ denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth graphs $m=O(n)$) and $W$ the largest absolute value of the weights.
Our main theoretical results are as follows.
First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of $\epsilon$ in time $O(n \cdot \log (n/\epsilon))$ and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time $O(n \cdot \log (|a\cdot b|))=O(n\cdot\log (n\cdot W))$, when the output is $\frac{a}{b}$, as compared to the previously best known algorithm with running time $O(n^2 \cdot \log (n\cdot W))$. Third, for the minimum initial credit problem we show that (i)~for general graphs the problem can be solved in $O(n^2\cdot m)$ time and the associated decision problem can be solved in $O(n\cdot m)$ time, improving the previous known $O(n^3\cdot m\cdot \log (n\cdot W))$ and $O(n^2 \cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs we present an algorithm that requires $O(n\cdot \log n)$ time, improving the previous known $O(n^4 \cdot \log (n \cdot W))$ bound.
We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-330-v2-1},
year = {2015},
}
@misc{5438,
abstract = {The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses.
The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
issn = {2664-1690},
pages = {15},
publisher = {IST Austria},
title = {{Edit distance for pushdown automata}},
doi = {10.15479/AT:IST-2015-334-v1-1},
year = {2015},
}
@misc{5439,
abstract = {The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata. },
author = {Boker, Udi and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{The target discounted-sum problem}},
doi = {10.15479/AT:IST-2015-335-v1-1},
year = {2015},
}
@misc{5440,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom for payoff in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. The fitness (or the reproductive rate) is a non-negative number, and depends on the payoff. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are as follows: First, we consider a special case of the general problem, where the residents do not reproduce. We show that the qualitative question is NP-complete, and the quantitative approximation question is #P-complete, and the hardness results hold even in the special case where the interaction and the replacement graphs coincide. Second, we show that in general both the qualitative and the quantitative approximation questions are PSPACE-complete. The PSPACE-hardness result for quantitative approximation holds even when the fitness is always positive.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v2-2},
year = {2015},
}
@misc{5441,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Goharshady, Amir and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
doi = {10.15479/AT:IST-2015-340-v1-1},
year = {2015},
}
@misc{5442,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural properties that arise in program analysis.
We consider that each component of the concurrent system is a graph with constant treewidth, and it is known that the controlflow graphs of most programs have constant treewidth. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis problems (e.g., alias analysis). The study of multiple queries allows us to consider the tradeoff between the resource usage of the \emph{one-time} preprocessing and for \emph{each individual} query. The traditional approaches construct the product graph of all components and apply the best-known graph algorithm on the product. In the traditional approach, even the answer to a single query requires the transitive closure computation (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time.
Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time,
each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results that show that the worst-case running times of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (such as improving
the worst-case bounds for the shortest path problem in general graphs whose current best-known bound has not been improved in five decades). Finally, we provide a prototype implementation of our algorithms which significantly outperforms the existing algorithmic methods on several benchmarks.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
year = {2015},
}
@misc{5443,
abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica},
issn = {2664-1690},
pages = {23},
publisher = {IST Austria},
title = {{A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs}},
doi = {10.15479/AT:IST-2015-325-v2-1},
year = {2015},
}
@misc{5444,
abstract = {A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal.},
author = {Reiter, Johannes and Makohon-Moore, Alvin and Gerold, Jeffrey and Bozic, Ivana and Chatterjee, Krishnendu and Iacobuzio-Donahue, Christine and Vogelstein, Bert and Nowak, Martin},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{Reconstructing robust phylogenies of metastatic cancers}},
doi = {10.15479/AT:IST-2015-399-v1-1},
year = {2015},
}
@misc{5549,
abstract = {This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.},
author = {Fellner, Andreas},
keywords = {Markov Decision Process, Decision Tree, Probabilistic Verification, Counterexample Explanation},
publisher = {IST Austria},
title = {{Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes}},
doi = {10.15479/AT:ISTA:28},
year = {2015},
}
@article{5749,
abstract = {Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.},
author = {Wielgoss, Sébastien and Bergmiller, Tobias and Bischofberger, Anna M. and Hall, Alex R.},
issn = {0737-4038},
journal = {Molecular Biology and Evolution},
number = {3},
pages = {770--782},
publisher = {Oxford University Press (OUP)},
title = {{Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria}},
doi = {10.1093/molbev/msv270},
volume = {33},
year = {2015},
}
@article{5804,
abstract = {We present here the first integer-based algorithm for constructing a well-defined lattice sphere specified by integer radius and integer center. The algorithm evolves from a unique correspondence between the lattice points comprising the sphere and the distribution of sum of three square numbers in integer intervals. We characterize these intervals to derive a useful set of recurrences, which, in turn, aids in efficient computation. Each point of the lattice sphere is determined by resorting to only a few primitive operations in the integer domain. The symmetry of its quadraginta octants provides an added advantage by confining the computation to its prima quadraginta octant. Detailed theoretical analysis and experimental results have been furnished to demonstrate its simplicity and elegance.},
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0304-3975},
journal = {Theoretical Computer Science},
number = {4},
pages = {56--72},
publisher = {Elsevier},
title = {{From prima quadraginta octant to lattice sphere through primitive integer operations}},
doi = {10.1016/j.tcs.2015.11.018},
volume = {624},
year = {2015},
}
@article{5807,
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0304-3975},
journal = {Theoretical Computer Science},
number = {11},
pages = {146--163},
publisher = {Elsevier},
title = {{On different topological classes of spherical geodesic paths and circles inZ3}},
doi = {10.1016/j.tcs.2015.09.003},
volume = {605},
year = {2015},
}
@article{5808,
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0178-2789},
journal = {The Visual Computer},
number = {6-8},
pages = {787--797},
publisher = {Springer Nature},
title = {{Layer the sphere}},
doi = {10.1007/s00371-015-1101-3},
volume = {31},
year = {2015},
}
@article{594,
abstract = {Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.},
author = {Sainsbury, Sarah and Bernecky, Carrie A and Cramer, Patrick},
journal = {Nature Reviews Molecular Cell Biology},
number = {3},
pages = {129 -- 143},
publisher = {Nature Publishing Group},
title = {{Structural basis of transcription initiation by RNA polymerase II}},
doi = {10.1038/nrm3952},
volume = {16},
year = {2015},
}
@article{6118,
abstract = {Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.},
author = {Fenk, Lorenz A. and de Bono, Mario},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
number = {27},
pages = {E3525--E3534},
publisher = {National Academy of Sciences},
title = {{Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity}},
doi = {10.1073/pnas.1423808112},
volume = {112},
year = {2015},
}
@article{6120,
abstract = {Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.},
author = {Laurent, Patrick and Soltesz, Zoltan and Nelson, Geoffrey M and Chen, Changchun and Arellano-Carbajal, Fausto and Levy, Emmanuel and de Bono, Mario},
issn = {2050-084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Decoding a neural circuit controlling global animal state in C. elegans}},
doi = {10.7554/elife.04241},
volume = {4},
year = {2015},
}
@article{6507,
abstract = {The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.},
author = {Zhou, Long and Hinerman, J. M. and Blaszczyk, M. and Miller, J. L. C. and Conrady, D. G. and Barrow, A. D. and Chirgadze, D. Y. and Bihan, D. and Farndale, R. W. and Herr, A. B.},
issn = {0006-4971},
journal = {Blood},
number = {5},
pages = {529--537},
publisher = {American Society of Hematology},
title = {{Structural basis for collagen recognition by the immune receptor OSCAR}},
doi = {10.1182/blood-2015-08-667055},
volume = {127},
year = {2015},
}
@article{6736,
abstract = {Motivated by the significant performance gains which polar codes experience under successive cancellation list decoding, their scaling exponent is studied as a function of the list size. In particular, the error probability is fixed, and the tradeoff between the block length and back-off from capacity is analyzed. A lower bound is provided on the error probability under MAP decoding with list size L for any binary-input memoryless output-symmetric channel and for any class of linear codes such that their minimum distance is unbounded as the block length grows large. Then, it is shown that under MAP decoding, although the introduction of a list can significantly improve the involved constants, the scaling exponent itself, i.e., the speed at which capacity is approached, stays unaffected for any finite list size. In particular, this result applies to polar codes, since their minimum distance tends to infinity as the block length increases. A similar result is proved for genie-aided successive cancellation decoding when transmission takes place over the binary erasure channel, namely, the scaling exponent remains constant for any fixed number of helps from the genie. Note that since genie-aided successive cancellation decoding might be strictly worse than successive cancellation list decoding, the problem of establishing the scaling exponent of the latter remains open.},
author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {9},
pages = {4838--4851},
publisher = {IEEE},
title = {{Scaling exponent of list decoders with applications to polar codes}},
doi = {10.1109/tit.2015.2453315},
volume = {61},
year = {2015},
}
@article{6737,
abstract = {This paper presents polar coding schemes for the two-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of two-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a superpolynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. To align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and channel outputs. To remove these constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this paper are quite general, and they can be adopted to many other multiterminal scenarios whenever there polar indices need to be aligned.},
author = {Mondelli, Marco and Hassani, Hamed and Sason, Igal and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {2},
pages = {783--800},
publisher = {IEEE},
title = {{Achieving Marton’s region for broadcast channels using polar codes}},
doi = {10.1109/tit.2014.2368555},
volume = {61},
year = {2015},
}
@article{7070,
abstract = {Torque magnetization measurements on YBa2Cu3Oy (YBCO) at doping y=6.67 (p=0.12), in dc fields (B) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field Hirr(T=0)≈24 T. The differential susceptibility dM/dB, however, is more rapidly suppressed for B≳16 T than expected from the properties of the low field superconducting state, and saturates at a low value for fields B≳24 T. In addition, torque measurements on a p=0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behavior, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with charge-density-wave (CDW) order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes dM/dB to saturate at high field. The diamagnetic signal observed above 50 T for the p=0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger three-dimensional ordered CDW.},
author = {Yu, Jing Fei and Ramshaw, B. J. and Kokanović, I. and Modic, Kimberly A and Harrison, N. and Day, James and Liang, Ruixing and Hardy, W. N. and Bonn, D. A. and McCollam, A. and Julian, S. R. and Cooper, J. R.},
issn = {1098-0121},
journal = {Physical Review B},
number = {18},
publisher = {APS},
title = {{Magnetization of underdoped YBa2Cu3Oy above the irreversibility field}},
doi = {10.1103/physrevb.92.180509},
volume = {92},
year = {2015},
}
@article{1540,
abstract = {Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.},
author = {Robert, Hélène and Crhák Khaitová, Lucie and Mroue, Souad and Benková, Eva},
journal = {Journal of Experimental Botany},
number = {16},
pages = {5029 -- 5042},
publisher = {Oxford University Press},
title = {{The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis}},
doi = {10.1093/jxb/erv256},
volume = {66},
year = {2015},
}
@inproceedings{1541,
abstract = {We present XSpeed a parallel state-space exploration algorithm for continuous systems with linear dynamics and nondeterministic inputs. The motivation of having parallel algorithms is to exploit the computational power of multi-core processors to speed-up performance. The parallelization is achieved on two fronts. First, we propose a parallel implementation of the support function algorithm by sampling functions in parallel. Second, we propose a parallel state-space exploration by slicing the time horizon and computing the reachable states in the time slices in parallel. The second method can be however applied only to a class of linear systems with invertible dynamics and fixed input. A GP-GPU implementation is also presented following a lazy evaluation strategy on support functions. The parallel algorithms are implemented in the tool XSpeed. We evaluated the performance on two benchmarks including an 28 dimension Helicopter model. Comparison with the sequential counterpart shows a maximum speed-up of almost 7× on a 6 core, 12 thread Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows a maximum speed-up of 12× over the sequential implementation and 53× over SpaceEx (LGG scenario), the state of the art tool for reachability analysis of linear hybrid systems. Experiments illustrate that our parallel algorithm with time slicing not only speeds-up performance but also improves precision.},
author = {Ray, Rajarshi and Gurung, Amit and Das, Binayak and Bartocci, Ezio and Bogomolov, Sergiy and Grosu, Radu},
location = {Haifa, Israel},
pages = {3 -- 18},
publisher = {Springer},
title = {{XSpeed: Accelerating reachability analysis on multi-core processors}},
doi = {10.1007/978-3-319-26287-1_1},
volume = {9434},
year = {2015},
}
@article{1542,
abstract = {The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. },
author = {Paixao, Tiago and Badkobeh, Golnaz and Barton, Nicholas H and Çörüş, Doğan and Dang, Duccuong and Friedrich, Tobias and Lehre, Per and Sudholt, Dirk and Sutton, Andrew and Trubenova, Barbora},
journal = { Journal of Theoretical Biology},
pages = {28 -- 43},
publisher = {Elsevier},
title = {{Toward a unifying framework for evolutionary processes}},
doi = {10.1016/j.jtbi.2015.07.011},
volume = {383},
year = {2015},
}