@article{7389, abstract = {Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1])) cannot be embedded into Isom(W_1(R)).}, author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel}, issn = {10886850}, journal = {Transactions of the American Mathematical Society}, keywords = {Wasserstein space, isometric embeddings, isometric rigidity, exotic isometry flow}, number = {8}, pages = {5855--5883}, publisher = {American Mathematical Society}, title = {{Isometric study of Wasserstein spaces - the real line}}, doi = {10.1090/tran/8113}, volume = {373}, year = {2020}, } @article{7467, abstract = {Nanomaterials produced from the bottom-up assembly of nanocrystals may incorporate ∼1020–1021 cm–3 not fully coordinated surface atoms, i.e., ∼1020–1021 cm–3 potential donor or acceptor states that can strongly affect transport properties. Therefore, to exploit the full potential of nanocrystal building blocks to produce functional nanomaterials and thin films, a proper control of their surface chemistry is required. Here, we analyze how the ligand stripping procedure influences the charge and heat transport properties of sintered PbSe nanomaterials produced from the bottom-up assembly of colloidal PbSe nanocrystals. First, we show that the removal of the native organic ligands by thermal decomposition in an inert atmosphere leaves relatively large amounts of carbon at the crystal interfaces. This carbon blocks crystal growth during consolidation and at the same time hampers charge and heat transport through the final nanomaterial. Second, we demonstrate that, by stripping ligands from the nanocrystal surface before consolidation, nanomaterials with larger crystal domains, lower porosity, and higher charge carrier concentrations are obtained, thus resulting in nanomaterials with higher electrical and thermal conductivities. In addition, the ligand displacement leaves the nanocrystal surface unprotected, facilitating oxidation and chalcogen evaporation. The influence of the ligand displacement on the nanomaterial charge transport properties is rationalized here using a two-band model based on the standard Boltzmann transport equation with the relaxation time approximation. Finally, we present an application of the produced functional nanomaterials by modeling, fabricating, and testing a simple PbSe-based thermoelectric device with a ring geometry.}, author = {Cadavid, Doris and Ortega, Silvia and Illera, Sergio and Liu, Yu and Ibáñez, Maria and Shavel, Alexey and Zhang, Yu and Li, Mengyao and López, Antonio M. and Noriega, Germán and Durá, Oscar Juan and López De La Torre, M. A. and Prades, Joan Daniel and Cabot, Andreu}, issn = {2574-0962}, journal = {ACS Applied Energy Materials}, number = {3}, pages = {2120--2129}, publisher = {American Chemical Society}, title = {{Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials}}, doi = {10.1021/acsaem.9b02137}, volume = {3}, year = {2020}, } @article{7465, abstract = {The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.}, author = {Mazur, Ewa and Gallei, Michelle C and Adamowski, Maciek and Han, Huibin and Robert, Hélène S. and Friml, Jiří}, issn = {18732259}, journal = {Plant Science}, number = {4}, publisher = {Elsevier}, title = {{Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis}}, doi = {10.1016/j.plantsci.2020.110414}, volume = {293}, year = {2020}, } @article{7466, abstract = {Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.}, author = {Kierdorf, Katrin and Hersperger, Fabian and Sharrock, Jessica and Vincent, Crystal M. and Ustaoglu, Pinar and Dou, Jiawen and György, Attila and Groß, Olaf and Siekhaus, Daria E and Dionne, Marc S.}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila}}, doi = {10.7554/eLife.51595}, volume = {9}, year = {2020}, } @article{7472, abstract = {Temporally organized reactivation of experiences during awake immobility periods is thought to underlie cognitive processes like planning and evaluation. While replay of trajectories is well established for the hippocampus, it is unclear whether the medial prefrontal cortex (mPFC) can reactivate sequential behavioral experiences in the awake state to support task execution. We simultaneously recorded from hippocampal and mPFC principal neurons in rats performing a mPFC-dependent rule-switching task on a plus maze. We found that mPFC neuronal activity encoded relative positions between the start and goal. During awake immobility periods, the mPFC replayed temporally organized sequences of these generalized positions, resembling entire spatial trajectories. The occurrence of mPFC trajectory replay positively correlated with rule-switching performance. However, hippocampal and mPFC trajectory replay occurred independently, indicating different functions. These results demonstrate that the mPFC can replay ordered activity patterns representing generalized locations and suggest that mPFC replay might have a role in flexible behavior.}, author = {Käfer, Karola and Nardin, Michele and Blahna, Karel and Csicsvari, Jozsef L}, issn = {0896-6273}, journal = {Neuron}, number = {1}, pages = {P154--165.e6}, publisher = {Elsevier}, title = {{Replay of behavioral sequences in the medial prefrontal cortex during rule switching}}, doi = {10.1016/j.neuron.2020.01.015}, volume = {106}, year = {2020}, } @article{7388, abstract = {We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants.}, author = {Gerencser, Mate}, issn = {0294-1449}, journal = {Annales de l'Institut Henri Poincaré C, Analyse non linéaire}, number = {3}, pages = {663--682}, publisher = {Elsevier}, title = {{Nondivergence form quasilinear heat equations driven by space-time white noise}}, doi = {10.1016/j.anihpc.2020.01.003}, volume = {37}, year = {2020}, } @article{7487, abstract = {Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.}, author = {López De La Oliva, Amada R. and Campos-Sandoval, José A. and Gómez-García, María C. and Cardona, Carolina and Martín-Rufián, Mercedes and Sialana, Fernando J. and Castilla, Laura and Bae, Narkhyun and Lobo, Carolina and Peñalver, Ana and García-Frutos, Marina and Carro, David and Enrique, Victoria and Paz, José C. and Mirmira, Raghavendra G. and Gutiérrez, Antonia and Alonso, Francisco J. and Segura, Juan A. and Matés, José M. and Lubec, Gert and Márquez, Javier}, issn = {20452322}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, title = {{Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation}}, doi = {10.1038/s41598-020-58264-4}, volume = {10}, year = {2020}, } @article{7490, abstract = {In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.}, author = {Narasimhan, Madhumitha and Johnson, Alexander J and Prizak, Roshan and Kaufmann, Walter and Tan, Shutang and Casillas Perez, Barbara E and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants}}, doi = {10.7554/eLife.52067}, volume = {9}, year = {2020}, } @article{7488, abstract = {Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.}, author = {Latorre-Pellicer, Ana and Ascaso, Ángela and Trujillano, Laura and Gil-Salvador, Marta and Arnedo, Maria and Lucia-Campos, Cristina and Antoñanzas-Pérez, Rebeca and Marcos-Alcalde, Iñigo and Parenti, Ilaria and Bueno-Lozano, Gloria and Musio, Antonio and Puisac, Beatriz and Kaiser, Frank J. and Ramos, Feliciano J. and Gómez-Puertas, Paulino and Pié, Juan}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {3}, publisher = {MDPI}, title = {{Evaluating Face2Gene as a tool to identify Cornelia de Lange syndrome by facial phenotypes}}, doi = {10.3390/ijms21031042}, volume = {21}, year = {2020}, } @inproceedings{7505, abstract = {Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural networks. At runtime, inputs not falling into any of the categories learned during training cannot be classified correctly by the neural network. Existing approaches treat the neural network as a black box and try to detect novel inputs based on the confidence of the output predictions. However, neural networks are not trained to reduce their confidence for novel inputs, which limits the effectiveness of these approaches. We propose a framework to monitor a neural network by observing the hidden layers. We employ a common abstraction from program analysis - boxes - to identify novel behaviors in the monitored layers, i.e., inputs that cause behaviors outside the box. For each neuron, the boxes range over the values seen in training. The framework is efficient and flexible to achieve a desired trade-off between raising false warnings and detecting novel inputs. We illustrate the performance and the robustness to variability in the unknown classes on popular image-classification benchmarks.}, author = {Henzinger, Thomas A and Lukina, Anna and Schilling, Christian}, booktitle = {24th European Conference on Artificial Intelligence}, location = {Santiago de Compostela, Spain}, pages = {2433--2440}, publisher = {IOS Press}, title = {{Outside the box: Abstraction-based monitoring of neural networks}}, doi = {10.3233/FAIA200375}, volume = {325}, year = {2020}, } @article{7508, abstract = {In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N d-dimensional bosons for large N. The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form (N−1)−1Ndβv(Nβ·)forβ∈[0,14d). We derive a sequence of N-body functions which approximate the true many-body dynamics in L2(RdN)-norm to arbitrary precision in powers of N−1. The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution.}, author = {Bossmann, Lea and Pavlović, Nataša and Pickl, Peter and Soffer, Avy}, issn = {1572-9613}, journal = {Journal of Statistical Physics}, pages = {1362--1396}, publisher = {Springer Nature}, title = {{Higher order corrections to the mean-field description of the dynamics of interacting bosons}}, doi = {10.1007/s10955-020-02500-8}, volume = {178}, year = {2020}, } @article{7511, abstract = {Cryo electron tomography with subsequent subtomogram averaging is a powerful technique to structurally analyze macromolecular complexes in their native context. Although close to atomic resolution in principle can be obtained, it is not clear how individual experimental parameters contribute to the attainable resolution. Here, we have used immature HIV-1 lattice as a benchmarking sample to optimize the attainable resolution for subtomogram averaging. We systematically tested various experimental parameters such as the order of projections, different angular increments and the use of the Volta phase plate. We find that although any of the prominently used acquisition schemes is sufficient to obtain subnanometer resolution, dose-symmetric acquisition provides considerably better outcome. We discuss our findings in order to provide guidance for data acquisition. Our data is publicly available and might be used to further develop processing routines.}, author = {Turoňová, Beata and Hagen, Wim J.H. and Obr, Martin and Mosalaganti, Shyamal and Beugelink, J. Wouter and Zimmerli, Christian E. and Kräusslich, Hans Georg and Beck, Martin}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Benchmarking tomographic acquisition schemes for high-resolution structural biology}}, doi = {10.1038/s41467-020-14535-2}, volume = {11}, year = {2020}, } @article{7497, abstract = {Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole‐3‐acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2 to 15 μM) and 1‐naphthalenacetic acid (NAA) (10 to 20 μM). Moreover, the roots of the JA signalling‐defective coi1‐18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild‐type Nipponbare and miR393b‐overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross‐talk between JA signalling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.}, author = {Han, L and Zhou, X and Zhao, Y and Zhu, S and Wu, L and He, Y and Ping, X and Lu, X and Huang, W and Qian, J and Zhang, L and Jiang, X and Zhu, D and Luo, C and Li, S and Dong, Q and Fu, Q and Deng, K and Wang, X and Wang, L and Peng, S and Wu, J and Li, W and Friml, Jiří and Zhu, Y and He, X and Du, Y}, issn = {1744-7909}, journal = {Journal of Integrative Plant Biology}, number = {9}, pages = {1433--1451}, publisher = {Wiley}, title = {{Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid}}, doi = {10.1111/jipb.12905}, volume = {62}, year = {2020}, } @article{7534, abstract = {In the past two decades, our understanding of the transition to turbulence in shear flows with linearly stable laminar solutions has greatly improved. Regarding the susceptibility of the laminar flow, two concepts have been particularly useful: the edge states and the minimal seeds. In this nonlinear picture of the transition, the basin boundary of turbulence is set by the edge state's stable manifold and this manifold comes closest in energy to the laminar equilibrium at the minimal seed. We begin this paper by presenting numerical experiments in which three-dimensional perturbations are too energetic to trigger turbulence in pipe flow but they do lead to turbulence when their amplitude is reduced. We show that this seemingly counterintuitive observation is in fact consistent with the fully nonlinear description of the transition mediated by the edge state. In order to understand the physical mechanisms behind this process, we measure the turbulent kinetic energy production and dissipation rates as a function of the radial coordinate. Our main observation is that the transition to turbulence relies on the energy amplification away from the wall, as opposed to the turbulence itself, whose energy is predominantly produced near the wall. This observation is further supported by the similar analyses on the minimal seeds and the edge states. Furthermore, we show that the time evolution of production-over-dissipation curves provides a clear distinction between the different initial amplification stages of the transition to turbulence from the minimal seed.}, author = {Budanur, Nazmi B and Marensi, Elena and Willis, Ashley P. and Hof, Björn}, issn = {2469-990X}, journal = {Physical Review Fluids}, number = {2}, publisher = {American Physical Society}, title = {{Upper edge of chaos and the energetics of transition in pipe flow}}, doi = {10.1103/physrevfluids.5.023903}, volume = {5}, year = {2020}, } @article{7512, abstract = {We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. We prove that these conditions hold for general homogeneous polynomials of degree two and for symmetrized products of independent matrices with i.i.d. entries, thus establishing the optimal bulk local law for these classes of ensembles. In particular, we generalize a similar result of Anderson for anticommutator. For more general polynomials our conditions are effectively checkable numerically.}, author = {Erdös, László and Krüger, Torben H and Nemish, Yuriy}, issn = {10960783}, journal = {Journal of Functional Analysis}, number = {12}, publisher = {Elsevier}, title = {{Local laws for polynomials of Wigner matrices}}, doi = {10.1016/j.jfa.2020.108507}, volume = {278}, year = {2020}, } @article{7509, abstract = {In this paper we study the joint convexity/concavity of the trace functions Ψp,q,s(A,B)=Tr(Bq2K∗ApKBq2)s, p,q,s∈R, where A and B are positive definite matrices and K is any fixed invertible matrix. We will give full range of (p,q,s)∈R3 for Ψp,q,s to be jointly convex/concave for all K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb. In particular, we confirm a weaker conjecture of Audenaert and Datta and obtain the full range of (α,z) for α-z Rényi relative entropies to be monotone under completely positive trace preserving maps. We also give simpler proofs of many known results, including the concavity of Ψp,0,1/p for 0