@article{7103,
abstract = {Origin and functions of intermittent transitions among sleep stages, including short awakenings and arousals, constitute a challenge to the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that the complex micro-architecture characterizing the sleep-wake cycle results from an underlying non-equilibrium critical dynamics, bridging collective behaviors across spatio-temporal scales. We investigate θ and δ wave dynamics in control rats and in rats with lesions of sleep-promoting neurons in the parafacial zone. We demonstrate that intermittent bursts in θ and δ rhythms exhibit a complex temporal organization, with long-range power-law correlations and a robust duality of power law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, typical features of non-equilibrium systems self-organizing at criticality. Crucially, such temporal organization relates to anti-correlated coupling between θ- and δ-bursts, and is independent of the dominant physiologic state and lesions, a solid indication of a basic principle in sleep dynamics.},
author = {Wang, Jilin W. J. L. and Lombardi, Fabrizio and Zhang, Xiyun and Anaclet, Christelle and Ivanov, Plamen Ch.},
issn = {1553-7358},
journal = {PLOS Computational Biology},
number = {11},
publisher = {PLoS},
title = {{Non-equilibrium critical dynamics of bursts in θ and δ rhythms as fundamental characteristic of sleep and wake micro-architecture}},
doi = {10.1371/journal.pcbi.1007268},
volume = {15},
year = {2019},
}
@inbook{6890,
abstract = {Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.},
author = {Obr, Martin and Schur, Florian KM},
booktitle = {Complementary Strategies to Study Virus Structure and Function},
editor = {Rey, Félix A.},
isbn = {9780128184561},
issn = {0065-3527},
pages = {117--159},
publisher = {Elsevier},
title = {{Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging}},
doi = {10.1016/bs.aivir.2019.07.008},
volume = {105},
year = {2019},
}
@unpublished{6965,
abstract = {The central object of investigation of this paper is the Hirzebruch class, a
deformation of the Todd class, given by Hirzebruch (for smooth varieties) in
his celebrated book "Topological Methods in Algebraic Geometry". The
generalization for singular varieties is due to Brasselet-Sch\"urmann-Yokura.
Following the work of Weber, we investigate its equivariant version for
(possibly singular) toric varieties. The local decomposition of the Hirzebruch
class to the fixed points of the torus action and a formula for the local class
in terms of the defining fan are mentioned. After this review part, we prove
the positivity of local Hirzebruch classes for all toric varieties, thus
proving false the alleged counterexample given by Weber.},
author = {Rychlewicz, Kamil P},
booktitle = {arXiv},
pages = {14},
publisher = {ArXiv},
title = {{The positivity of local equivariant Hirzebruch class for toric varieties}},
year = {2019},
}
@article{6972,
abstract = {We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of thennodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e.,the initial state of the system may be arbitrary, and there can be up to f= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest. },
author = {Fulek, Radoslav and Kyncl, Jan},
booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)},
isbn = {978-3-95977-104-7},
issn = {1868-8969},
location = {Portland, OR, United States},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Z_2-Genus of graphs and minimum rank of partial symmetric matrices}},
doi = {10.4230/LIPICS.SOCG.2019.39},
volume = {129},
year = {2019},
}
@inproceedings{6035,
abstract = {We present JuliaReach, a toolbox for set-based reachability analysis of dynamical systems. JuliaReach consists of two main packages: Reachability, containing implementations of reachability algorithms for continuous and hybrid systems, and LazySets, a standalone library that implements state-of-the-art algorithms for calculus with convex sets. The library offers both concrete and lazy set representations, where the latter stands for the ability to delay set computations until they are needed. The choice of the programming language Julia and the accompanying documentation of our toolbox allow researchers to easily translate set-based algorithms from mathematics to software in a platform-independent way, while achieving runtime performance that is comparable to statically compiled languages. Combining lazy operations in high dimensions and explicit computations in low dimensions, JuliaReach can be applied to solve complex, large-scale problems.},
author = {Bogomolov, Sergiy and Forets, Marcelo and Frehse, Goran and Potomkin, Kostiantyn and Schilling, Christian},
booktitle = {Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control},
isbn = {9781450362825},
keyword = {reachability analysis, hybrid systems, lazy computation},
location = {Montreal, QC, Canada},
pages = {39--44},
publisher = {ACM},
title = {{JuliaReach: A toolbox for set-based reachability}},
doi = {10.1145/3302504.3311804},
volume = {22},
year = {2019},
}
@article{7398,
abstract = {Transporters of the solute carrier 6 (SLC6) family translocate their cognate substrate together with Na+ and Cl−. Detailed kinetic models exist for the transporters of GABA (GAT1/SLC6A1) and the monoamines dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4). Here, we posited that the transport cycle of individual SLC6 transporters reflects the physiological requirements they operate under. We tested this hypothesis by analyzing the transport cycle of glycine transporter 1 (GlyT1/SLC6A9) and glycine transporter 2 (GlyT2/SLC6A5). GlyT2 is the only SLC6 family member known to translocate glycine, Na+, and Cl− in a 1:3:1 stoichiometry. We analyzed partial reactions in real time by electrophysiological recordings. Contrary to monoamine transporters, both GlyTs were found to have a high transport capacity driven by rapid return of the empty transporter after release of Cl− on the intracellular side. Rapid cycling of both GlyTs was further supported by highly cooperative binding of cosubstrate ions and substrate such that their forward transport mode was maintained even under conditions of elevated intracellular Na+ or Cl−. The most important differences in the transport cycle of GlyT1 and GlyT2 arose from the kinetics of charge movement and the resulting voltage-dependent rate-limiting reactions: the kinetics of GlyT1 were governed by transition of the substrate-bound transporter from outward- to inward-facing conformations, whereas the kinetics of GlyT2 were governed by Na+ binding (or a related conformational change). Kinetic modeling showed that the kinetics of GlyT1 are ideally suited for supplying the extracellular glycine levels required for NMDA receptor activation.},
author = {Erdem, Fatma Asli and Ilic, Marija and Koppensteiner, Peter and Gołacki, Jakub and Lubec, Gert and Freissmuth, Michael and Sandtner, Walter},
issn = {0022-1295},
journal = {The Journal of General Physiology},
number = {8},
pages = {1035--1050},
publisher = {Rockefeller University Press},
title = {{A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2}},
doi = {10.1085/jgp.201912318},
volume = {151},
year = {2019},
}
@phdthesis{6179,
abstract = {In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.
In the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.
In the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure.},
author = {Schröder, Dominik J},
pages = {375},
publisher = {IST Austria},
title = {{From Dyson to Pearcey: Universal statistics in random matrix theory}},
doi = {10.15479/AT:ISTA:th6179},
year = {2019},
}
@article{6186,
abstract = {We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.},
author = {Cipolloni, Giorgio and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {2578-5885},
journal = {Pure and Applied Analysis },
number = {4},
pages = {615–707},
publisher = {MSP},
title = {{Cusp universality for random matrices, II: The real symmetric case}},
doi = {10.2140/paa.2019.1.615},
volume = {1},
year = {2019},
}
@article{6857,
abstract = {Gene Drives are regarded as future tools with a high potential for population control. Due to their inherent ability to overcome the rules of Mendelian inheritance, gene drives (GD) may spread genes rapidly through populations of sexually reproducing organisms. A release of organisms carrying a GD would constitute a paradigm shift in the handling of genetically modified organisms because gene drive organisms (GDO) are designed to drive their transgenes into wild populations and thereby increase the number of GDOs. The rapid development in this field and its focus on wild populations demand a prospective risk assessment with a focus on exposure related aspects. Presently, it is unclear how adequate risk management could be guaranteed to limit the spread of GDs in time and space, in order to avoid potential adverse effects in socio‐ecological systems.
The recent workshop on the “Evaluation of Spatial and Temporal Control of Gene Drives” hosted by the Institute of Safety/Security and Risk Sciences (ISR) in Vienna aimed at gaining some insight into the potential population dynamic behavior of GDs and appropriate measures of control. Scientists from France, Germany, England, and the USA discussed both topics in this meeting on April 4–5, 2019. This article summarizes results of the workshop.},
author = {Giese, B and Friess, J L and Schetelig, M F and Barton, Nicholas H and Messer, Philip and Debarre, Florence and Meimberg, H and Windbichler, N and Boete, C},
issn = {1521-1878},
journal = {BioEssays},
number = {11},
publisher = {Wiley},
title = {{Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna}},
doi = {10.1002/bies.201900151},
volume = {41},
year = {2019},
}
@article{5789,
abstract = {Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell–cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis.},
author = {Petridou, Nicoletta and Grigolon, Silvia and Salbreux, Guillaume and Hannezo, Edouard B and Heisenberg, Carl-Philipp J},
issn = {14657392},
journal = {Nature Cell Biology},
pages = {169–178},
publisher = {Nature Publishing Group},
title = {{Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling}},
doi = {10.1038/s41556-018-0247-4},
volume = {21},
year = {2019},
}
@inproceedings{7468,
abstract = {We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems.},
author = {Swoboda, Paul and Kolmogorov, Vladimir},
booktitle = {Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
isbn = {9781728132938},
issn = {10636919},
location = {Long Beach, CA, United States},
publisher = {IEEE},
title = {{Map inference via block-coordinate Frank-Wolfe algorithm}},
doi = {10.1109/CVPR.2019.01140},
volume = {2019-June},
year = {2019},
}
@article{7451,
abstract = {We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes–Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition.},
author = {Vukics, A. and Dombi, A. and Fink, Johannes M and Domokos, P.},
issn = {2521-327X},
journal = {Quantum},
publisher = {Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften},
title = {{Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition}},
doi = {10.22331/q-2019-06-03-150},
volume = {3},
year = {2019},
}
@article{5986,
abstract = {Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm (with 𝑂(𝑛8) being a crude bound on the run-time) to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of 𝑂(𝑛7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.},
author = {Lubiw, Anna and Masárová, Zuzana and Wagner, Uli},
issn = {0179-5376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {880--898},
publisher = {Springer Nature},
title = {{A proof of the orbit conjecture for flipping edge-labelled triangulations}},
doi = {10.1007/s00454-018-0035-8},
volume = {61},
year = {2019},
}
@article{7014,
abstract = {We study the problem of developing efficient approaches for proving
worst-case bounds of non-deterministic recursive programs. Ranking functions
are sound and complete for proving termination and worst-case bounds of
nonrecursive programs. First, we apply ranking functions to recursion,
resulting in measure functions. We show that measure functions provide a sound
and complete approach to prove worst-case bounds of non-deterministic recursive
programs. Our second contribution is the synthesis of measure functions in
nonpolynomial forms. We show that non-polynomial measure functions with
logarithm and exponentiation can be synthesized through abstraction of
logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem
using linear programming. While previous methods obtain worst-case polynomial
bounds, our approach can synthesize bounds of the form $\mathcal{O}(n\log n)$
as well as $\mathcal{O}(n^r)$ where $r$ is not an integer. We present
experimental results to demonstrate that our approach can obtain efficiently
worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the
divide-and-conquer algorithm for the Closest-Pair problem, where we obtain
$\mathcal{O}(n \log n)$ worst-case bound, and (ii) Karatsuba's algorithm for
polynomial multiplication and Strassen's algorithm for matrix multiplication,
where we obtain $\mathcal{O}(n^r)$ bound such that $r$ is not an integer and
close to the best-known bounds for the respective algorithms.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Goharshady, Amir Kafshdar},
journal = {ACM Transactions on Programming Languages and Systems},
number = {4},
publisher = {ACM},
title = {{Non-polynomial worst-case analysis of recursive programs}},
doi = {10.1145/3339984},
volume = {41},
year = {2019},
}
@article{6713,
abstract = {Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.},
author = {Castro, João Pl and Yancoskie, Michelle N. and Marchini, Marta and Belohlavy, Stefanie and Hiramatsu, Layla and Kučka, Marek and Beluch, William H. and Naumann, Ronald and Skuplik, Isabella and Cobb, John and Barton, Nicholas H and Rolian, Campbell and Chan, Yingguang Frank},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice}},
doi = {10.7554/eLife.42014},
volume = {8},
year = {2019},
}
@article{6338,
abstract = {Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning.},
author = {Stella, Federico and Baracskay, Peter and O'Neill, Joseph and Csicsvari, Jozsef L},
journal = {Neuron},
pages = {1--12},
publisher = {Elsevier},
title = {{Hippocampal reactivation of random trajectories resembling Brownian diffusion}},
doi = {10.1016/j.neuron.2019.01.052},
volume = {102},
year = {2019},
}
@article{151,
abstract = {We construct planar bi-Sobolev mappings whose local volume distortion is bounded from below by a given function f∈Lp with p>1. More precisely, for any 1<q<(p+1)/2 we construct W1,q-bi-Sobolev maps with identity boundary conditions; for f∈L∞, we provide bi-Lipschitz maps. The basic building block of our construction are bi-Lipschitz maps which stretch a given compact subset of the unit square by a given factor while preserving the boundary. The construction of these stretching maps relies on a slight strengthening of the celebrated covering result of Alberti, Csörnyei, and Preiss for measurable planar sets in the case of compact sets. We apply our result to a model functional in nonlinear elasticity, the integrand of which features fast blowup as the Jacobian determinant of the deformation becomes small. For such functionals, the derivation of the equilibrium equations for minimizers requires an additional regularization of test functions, which our maps provide.},
author = {Fischer, Julian L and Kneuss, Olivier},
journal = {Journal of Differential Equations},
number = {1},
pages = {257 -- 311},
publisher = {Elsevier},
title = {{Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with L p data and applications to nonlinear elasticity}},
doi = {10.1016/j.jde.2018.07.045},
volume = {266},
year = {2019},
}
@article{7160,
abstract = {Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.},
author = {Salazar, Juan Esteban and Severin, Daniel and Vega Zuniga, Tomas A and Fernández-Aburto, Pedro and Deichler, Alfonso and Sallaberry A., Michel and Mpodozis, Jorge},
issn = {1421-9743},
journal = {Brain, Behavior and Evolution},
number = {1-4},
pages = {27--36},
publisher = {Karger},
title = {{Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes)}},
doi = {10.1159/000504162},
volume = {94},
year = {2019},
}
@article{6819,
abstract = {Glyphosate (N-phosphonomethyl glycine) and its commercial herbicide formulations have been shown to exert toxicity via various mechanisms. It has been asserted that glyphosate substitutes for glycine in polypeptide chains leading to protein misfolding and toxicity. However, as no direct evidence exists for glycine to glyphosate substitution in proteins, including in mammalian organisms, we tested this claim by conducting a proteomics analysis of MDA-MB-231 human breast cancer cells grown in the presence of 100 mg/L glyphosate for 6 days. Protein extracts from three treated and three untreated cell cultures were analysed as one TMT-6plex labelled sample, to highlight a specific pattern (+/+/+/−/−/−) of reporter intensities for peptides bearing true glyphosate treatment induced-post translational modifications as well as allowing an investigation of the total proteome.},
author = {Antoniou, Michael N. and Nicolas, Armel and Mesnage, Robin and Biserni, Martina and Rao, Francesco V. and Martin, Cristina Vazquez},
issn = {1756-0500},
journal = {BMC Research Notes},
publisher = {BioMed Central},
title = {{Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells}},
doi = {10.1186/s13104-019-4534-3},
volume = {12},
year = {2019},
}