@article{8793, abstract = {We study optimal election sequences for repeatedly selecting a (very) small group of leaders among a set of participants (players) with publicly known unique ids. In every time slot, every player has to select exactly one player that it considers to be the current leader, oblivious to the selection of the other players, but with the overarching goal of maximizing a given parameterized global (“social”) payoff function in the limit. We consider a quite generic model, where the local payoff achieved by a given player depends, weighted by some arbitrary but fixed real parameter, on the number of different leaders chosen in a round, the number of players that choose the given player as the leader, and whether the chosen leader has changed w.r.t. the previous round or not. The social payoff can be the maximum, average or minimum local payoff of the players. Possible applications include quite diverse examples such as rotating coordinator-based distributed algorithms and long-haul formation flying of social birds. Depending on the weights and the particular social payoff, optimal sequences can be very different, from simple round-robin where all players chose the same leader alternatingly every time slot to very exotic patterns, where a small group of leaders (at most 2) is elected in every time slot. Moreover, we study the question if and when a single player would not benefit w.r.t. its local payoff when deviating from the given optimal sequence, i.e., when our optimal sequences are Nash equilibria in the restricted strategy space of oblivious strategies. As this is the case for many parameterizations of our model, our results reveal that no punishment is needed to make it rational for the players to optimize the social payoff.}, author = {Zeiner, Martin and Schmid, Ulrich and Chatterjee, Krishnendu}, issn = {0166218X}, journal = {Discrete Applied Mathematics}, number = {1}, pages = {392--415}, publisher = {Elsevier}, title = {{Optimal strategies for selecting coordinators}}, doi = {10.1016/j.dam.2020.10.022}, volume = {289}, year = {2021}, } @article{8816, abstract = {Area-dependent quantum field theory is a modification of two-dimensional topological quantum field theory, where one equips each connected component of a bordism with a positive real number—interpreted as area—which behaves additively under glueing. As opposed to topological theories, in area-dependent theories the state spaces can be infinite-dimensional. We introduce the notion of regularised Frobenius algebras in Hilbert spaces and show that area-dependent theories are in one-to-one correspondence to commutative regularised Frobenius algebras. We also provide a state sum construction for area-dependent theories. Our main example is two-dimensional Yang–Mills theory with compact gauge group, which we treat in detail.}, author = {Runkel, Ingo and Szegedy, Lorant}, issn = {14320916}, journal = {Communications in Mathematical Physics}, number = {1}, pages = {83–117}, publisher = {Springer Nature}, title = {{Area-dependent quantum field theory}}, doi = {10.1007/s00220-020-03902-1}, volume = {381}, year = {2021}, } @article{8818, abstract = {The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.}, author = {Ramirez Villegas, Juan F and Besserve, Michel and Murayama, Yusuke and Evrard, Henry C. and Oeltermann, Axel and Logothetis, Nikos K.}, issn = {14764687}, journal = {Nature}, number = {7840}, pages = {96--102}, publisher = {Springer Nature}, title = {{Coupling of hippocampal theta and ripples with pontogeniculooccipital waves}}, doi = {10.1038/s41586-020-2914-4}, volume = {589}, year = {2021}, } @article{8773, abstract = {Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell.}, author = {Brown, Adam and Romanov, Anna}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, keywords = {Applied Mathematics, General Mathematics}, number = {1}, pages = {37--52}, publisher = {American Mathematical Society}, title = {{Contravariant forms on Whittaker modules}}, doi = {10.1090/proc/15205}, volume = {149}, year = {2021}, } @article{8792, abstract = {This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.}, author = {Marveggio, Alice and Schimperna, Giulio}, issn = {10902732}, journal = {Journal of Differential Equations}, number = {2}, pages = {924--970}, publisher = {Elsevier}, title = {{On a non-isothermal Cahn-Hilliard model based on a microforce balance}}, doi = {10.1016/j.jde.2020.10.030}, volume = {274}, year = {2021}, } @article{8912, abstract = {For automata, synchronization, the problem of bringing an automaton to a particular state regardless of its initial state, is important. It has several applications in practice and is related to a fifty-year-old conjecture on the length of the shortest synchronizing word. Although using shorter words increases the effectiveness in practice, finding a shortest one (which is not necessarily unique) is NP-hard. For this reason, there exist various heuristics in the literature. However, high-quality heuristics such as SynchroP producing relatively shorter sequences are very expensive and can take hours when the automaton has tens of thousands of states. The SynchroP heuristic has been frequently used as a benchmark to evaluate the performance of the new heuristics. In this work, we first improve the runtime of SynchroP and its variants by using algorithmic techniques. We then focus on adapting SynchroP for many-core architectures, and overall, we obtain more than 1000× speedup on GPUs compared to naive sequential implementation that has been frequently used as a benchmark to evaluate new heuristics in the literature. We also propose two SynchroP variants and evaluate their performance.}, author = {Sarac, Naci E and Altun, Ömer Faruk and Atam, Kamil Tolga and Karahoda, Sertac and Kaya, Kamer and Yenigün, Hüsnü}, issn = {09574174}, journal = {Expert Systems with Applications}, number = {4}, publisher = {Elsevier}, title = {{Boosting expensive synchronizing heuristics}}, doi = {10.1016/j.eswa.2020.114203}, volume = {167}, year = {2021}, } @article{8928, abstract = {Domestication is a human‐induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species‐specific demographic processes between species. A convergent history of domestication with gene flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a “protracted period” of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species‐specific and supported by the few historical records available.}, author = {Arnoux, Stéphanie and Fraisse, Christelle and Sauvage, Christopher}, issn = {14209101}, journal = {Journal of Evolutionary Biology}, number = {2}, pages = {270--283}, publisher = {Wiley}, title = {{Genomic inference of complex domestication histories in three Solanaceae species}}, doi = {10.1111/jeb.13723}, volume = {34}, year = {2021}, } @article{8992, abstract = {The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.}, author = {Tan, Shutang and Luschnig, Christian and Friml, Jiří}, issn = {17529867}, journal = {Molecular Plant}, number = {1}, pages = {151--165}, publisher = {Elsevier}, title = {{Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling}}, doi = {10.1016/j.molp.2020.11.004}, volume = {14}, year = {2021}, } @article{8988, abstract = {The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1’s functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1’s enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.}, author = {Düllberg, Christian F and Auer, Albert and Canigova, Nikola and Loibl, Katrin and Loose, Martin}, issn = {10916490}, journal = {PNAS}, number = {1}, publisher = {National Academy of Sciences}, title = {{In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1}}, doi = {10.1073/pnas.2010054118}, volume = {118}, year = {2021}, } @article{8927, abstract = {The recent outbreak of coronavirus disease 2019 (COVID‐19), caused by the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) has resulted in a world‐wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID‐19. Although liver failure does not seem to occur in the absence of pre‐existing liver disease, hepatic involvement in COVID‐19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID‐19 may range from direct infection by SARS‐CoV‐2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS‐CoV‐2 hepatic tropism as well as acute and possibly long‐term liver injury in COVID‐19.}, author = {Nardo, Alexander D. and Schneeweiss-Gleixner, Mathias and Bakail, May M and Dixon, Emmanuel D. and Lax, Sigurd F. and Trauner, Michael}, issn = {14783231}, journal = {Liver International}, number = {1}, pages = {20--32}, publisher = {Wiley}, title = {{Pathophysiological mechanisms of liver injury in COVID-19}}, doi = {10.1111/liv.14730}, volume = {41}, year = {2021}, } @article{13356, abstract = {Self-assembly of nanoparticles can be mediated by polymers, but has so far led almost exclusively to nanoparticle aggregates that are amorphous. Here, we employed Coulombic interactions to generate a range of composite materials from mixtures of charged nanoparticles and oppositely charged polymers. The assembly behavior of these nanoparticle/polymer composites depends on their order of addition: polymers added to nanoparticles give rise to stable aggregates, but nanoparticles added to polymers disassemble the initially formed aggregates. The amorphous aggregates were transformed into crystalline ones by transiently increasing the ionic strength of the solution. The morphology of the resulting crystals depended on the length of the polymer: short polymer chains mediated the self-assembly of nanoparticles into strongly faceted crystals, whereas long chains led to pseudospherical nanoparticle/polymer assemblies, within which the crystalline order of nanoparticles was retained.}, author = {Bian, Tong and Klajn, Rafal}, issn = {1749-6632}, journal = {Annals of the New York Academy of Sciences}, keywords = {History and Philosophy of Science, General Biochemistry, Genetics and Molecular Biology, General Neuroscience}, number = {1}, pages = {191--201}, publisher = {Wiley}, title = {{Morphology control in crystalline nanoparticle–polymer aggregates}}, doi = {10.1111/nyas.14674}, volume = {1505}, year = {2021}, } @article{13359, abstract = {Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and functions such as self-healing, homeostasis, and camouflage. These phenomena are enabled by the continuous conversion of energy stored in chemical fuels, such as ATP. Over the past decade, an increasing number of synthetic chemically driven systems have been reported that mimic the features of their natural counterparts. At the same time, it has been shown that dissipative self-assembly can also be fueled by light; these optically fueled systems have been developed in parallel to the chemically fueled ones. In this perspective, we critically compare these two classes of systems. Despite the complementarity and fundamental differences between these two modes of dissipative self-assembly, our analysis reveals that multiple analogies exist between chemically and light-fueled systems. We hope that these considerations will facilitate further development of the field of dissipative self-assembly.}, author = {Weißenfels, Maren and Gemen, Julius and Klajn, Rafal}, issn = {2451-9294}, journal = {Chem}, keywords = {Materials Chemistry, Biochemistry (medical), General Chemical Engineering, Environmental Chemistry, Biochemistry, General Chemistry}, number = {1}, pages = {23--37}, publisher = {Elsevier}, title = {{Dissipative self-assembly: Fueling with chemicals versus light}}, doi = {10.1016/j.chempr.2020.11.025}, volume = {7}, year = {2021}, } @article{8966, abstract = {During development, a single cell is transformed into a highly complex organism through progressive cell division, specification and rearrangement. An important prerequisite for the emergence of patterns within the developing organism is to establish asymmetries at various scales, ranging from individual cells to the entire embryo, eventually giving rise to the different body structures. This becomes especially apparent during gastrulation, when the earliest major lineage restriction events lead to the formation of the different germ layers. Traditionally, the unfolding of the developmental program from symmetry breaking to germ layer formation has been studied by dissecting the contributions of different signaling pathways and cellular rearrangements in the in vivo context of intact embryos. Recent efforts, using the intrinsic capacity of embryonic stem cells to self-assemble and generate embryo-like structures de novo, have opened new avenues for understanding the many ways by which an embryo can be built and the influence of extrinsic factors therein. Here, we discuss and compare divergent and conserved strategies leading to germ layer formation in embryos as compared to in vitro systems, their upstream molecular cascades and the role of extrinsic factors in this process.}, author = {Schauer, Alexandra and Heisenberg, Carl-Philipp J}, issn = {0012-1606}, journal = {Developmental Biology}, keywords = {Developmental Biology, Cell Biology, Molecular Biology}, pages = {71--81}, publisher = {Elsevier}, title = {{Reassembling gastrulation}}, doi = {10.1016/j.ydbio.2020.12.014}, volume = {474}, year = {2021}, } @article{8993, abstract = {N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.}, author = {Abas, Lindy and Kolb, Martina and Stadlmann, Johannes and Janacek, Dorina P. and Lukic, Kristina and Schwechheimer, Claus and Sazanov, Leonid A and Mach, Lukas and Friml, Jiří and Hammes, Ulrich Z.}, issn = {10916490}, journal = {PNAS}, number = {1}, publisher = {National Academy of Sciences}, title = {{Naphthylphthalamic acid associates with and inhibits PIN auxin transporters}}, doi = {10.1073/pnas.2020857118}, volume = {118}, year = {2021}, } @article{8999, abstract = {In many basic shear flows, such as pipe, Couette, and channel flow, turbulence does not arise from an instability of the laminar state, and both dynamical states co-exist. With decreasing flow speed (i.e., decreasing Reynolds number) the fraction of fluid in laminar motion increases while turbulence recedes and eventually the entire flow relaminarizes. The first step towards understanding the nature of this transition is to determine if the phase change is of either first or second order. In the former case, the turbulent fraction would drop discontinuously to zero as the Reynolds number decreases while in the latter the process would be continuous. For Couette flow, the flow between two parallel plates, earlier studies suggest a discontinuous scenario. In the present study we realize a Couette flow between two concentric cylinders which allows studies to be carried out in large aspect ratios and for extensive observation times. The presented measurements show that the transition in this circular Couette geometry is continuous suggesting that former studies were limited by finite size effects. A further characterization of this transition, in particular its relation to the directed percolation universality class, requires even larger system sizes than presently available. }, author = {Avila, Kerstin and Hof, Björn}, issn = {1099-4300}, journal = {Entropy}, number = {1}, publisher = {MDPI}, title = {{Second-order phase transition in counter-rotating taylor-couette flow experiment}}, doi = {10.3390/e23010058}, volume = {23}, year = {2021}, } @article{9005, abstract = {Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.}, author = {Brooks, Morris and Lemeshko, Mikhail and Lundholm, D. and Yakaboylu, Enderalp}, issn = {10797114}, journal = {Physical Review Letters}, number = {1}, publisher = {American Physical Society}, title = {{Molecular impurities as a realization of anyons on the two-sphere}}, doi = {10.1103/PhysRevLett.126.015301}, volume = {126}, year = {2021}, } @article{9009, abstract = {Recent advancements in live cell imaging technologies have identified the phenomenon of intracellular propagation of late apoptotic events, such as cytochrome c release and caspase activation. The mechanism, prevalence, and speed of apoptosis propagation remain unclear. Additionally, no studies have demonstrated propagation of the pro-apoptotic protein, BAX. To evaluate the role of BAX in intracellular apoptotic propagation, we used high speed live-cell imaging to visualize fluorescently tagged-BAX recruitment to mitochondria in four immortalized cell lines. We show that propagation of mitochondrial BAX recruitment occurs in parallel to cytochrome c and SMAC/Diablo release and is affected by cellular morphology, such that cells with processes are more likely to exhibit propagation. The initiation of propagation events is most prevalent in the distal tips of processes, while the rate of propagation is influenced by the 2-dimensional width of the process. Propagation was rarely observed in the cell soma, which exhibited near synchronous recruitment of BAX. Propagation velocity is not affected by mitochondrial volume in segments of processes, but is negatively affected by mitochondrial density. There was no evidence of a propagating wave of increased levels of intracellular calcium ions. Alternatively, we did observe a uniform increase in superoxide build-up in cellular mitochondria, which was released as a propagating wave simultaneously with the propagating recruitment of BAX to the mitochondrial outer membrane.}, author = {Grosser, Joshua A. and Maes, Margaret E and Nickells, Robert W.}, issn = {1573-675X}, journal = {Apoptosis}, number = {2}, pages = {132--145}, publisher = {Springer Nature}, title = {{Characteristics of intracellular propagation of mitochondrial BAX recruitment during apoptosis}}, doi = {10.1007/s10495-020-01654-w}, volume = {26}, year = {2021}, } @article{9038, abstract = {Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)―light coupled to lattice vibrations― with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices. }, author = {Aguilar-Merino, Patricia and Álvarez-Pérez, Gonzalo and Taboada-Gutiérrez, Javier and Duan, Jiahua and Prieto Gonzalez, Ivan and Álvarez-Prado, Luis Manuel and Nikitin, Alexey Y. and Martín-Sánchez, Javier and Alonso-González, Pablo}, issn = {20794991}, journal = {Nanomaterials}, number = {1}, publisher = {MDPI}, title = {{Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal}}, doi = {10.3390/nano11010120}, volume = {11}, year = {2021}, } @article{9020, abstract = {We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels. }, author = {Gulden, Tobias and Kamenev, Alex}, issn = {1099-4300}, journal = {Entropy}, number = {1}, publisher = {MDPI}, title = {{Dynamics of ion channels via non-hermitian quantum mechanics}}, doi = {10.3390/e23010125}, volume = {23}, year = {2021}, } @article{9037, abstract = {We continue our study of ‘no‐dimension’ analogues of basic theorems in combinatorial and convex geometry in Banach spaces. We generalize some results of the paper (Adiprasito, Bárány and Mustafa, ‘Theorems of Carathéodory, Helly, and Tverberg without dimension’, Proceedings of the Thirtieth Annual ACM‐SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, San Diego, California, 2019) 2350–2360) and prove no‐dimension versions of the colored Tverberg theorem, the selection lemma and the weak 𝜀 ‐net theorem in Banach spaces of type 𝑝>1 . To prove these results, we use the original ideas of Adiprasito, Bárány and Mustafa for the Euclidean case, our no‐dimension version of the Radon theorem and slightly modified version of the celebrated Maurey lemma.}, author = {Ivanov, Grigory}, issn = {14692120}, journal = {Bulletin of the London Mathematical Society}, number = {2}, pages = {631--641}, publisher = {London Mathematical Society}, title = {{No-dimension Tverberg's theorem and its corollaries in Banach spaces of type p}}, doi = {10.1112/blms.12449}, volume = {53}, year = {2021}, } @article{9046, author = {Römhild, Roderich and Andersson, Dan I.}, issn = {15537374}, journal = {PLoS Pathogens}, number = {1}, publisher = {Public Library of Science}, title = {{Mechanisms and therapeutic potential of collateral sensitivity to antibiotics}}, doi = {10.1371/journal.ppat.1009172}, volume = {17}, year = {2021}, } @article{9047, abstract = {This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear in the block length, the latency of SSC decoding is sublinear. More specifically, the latency of SSC decoding is O(N1−1/μ) , where N is the block length and μ is the scaling exponent of the channel, which captures the speed of convergence of the rate to capacity. Numerical results demonstrate the tightness of the bound and show that most of the latency reduction arises from the parallel decoding of subcodes of rate 0 or 1.}, author = {Mondelli, Marco and Hashemi, Seyyed Ali and Cioffi, John M. and Goldsmith, Andrea}, issn = {15582248}, journal = {IEEE Transactions on Wireless Communications}, number = {1}, pages = {18--27}, publisher = {IEEE}, title = {{Sublinear latency for simplified successive cancellation decoding of polar codes}}, doi = {10.1109/TWC.2020.3022922}, volume = {20}, year = {2021}, } @article{9036, abstract = {In this short note, we prove that the square root of the quantum Jensen-Shannon divergence is a true metric on the cone of positive matrices, and hence in particular on the quantum state space.}, author = {Virosztek, Daniel}, issn = {0001-8708}, journal = {Advances in Mathematics}, keywords = {General Mathematics}, number = {3}, publisher = {Elsevier}, title = {{The metric property of the quantum Jensen-Shannon divergence}}, doi = {10.1016/j.aim.2021.107595}, volume = {380}, year = {2021}, } @article{9101, abstract = {Behavioral predispositions are innate tendencies of animals to behave in a given way without the input of learning. They increase survival chances and, due to environmental and ecological challenges, may vary substantially even between closely related taxa. These differences are likely to be especially pronounced in long-lived species like crocodilians. This order is particularly relevant for comparative cognition due to its phylogenetic proximity to birds. Here we compared early life behavioral predispositions in two Alligatoridae species. We exposed American alligator and spectacled caiman hatchlings to three different novel situations: a novel object, a novel environment that was open and a novel environment with a shelter. This was then repeated a week later. During exposure to the novel environments, alligators moved around more and explored a larger range of the arena than the caimans. When exposed to the novel object, the alligators reduced the mean distance to the novel object in the second phase, while the caimans further increased it, indicating diametrically opposite ontogenetic development in behavioral predispositions. Although all crocodilian hatchlings face comparable challenges, e.g., high predation pressure, the effectiveness of parental protection might explain the observed pattern. American alligators are apex predators capable of protecting their offspring against most dangers, whereas adult spectacled caimans are frequently predated themselves. Their distancing behavior might be related to increased predator avoidance and also explain the success of invasive spectacled caimans in the natural habitats of other crocodilians.}, author = {Reber, Stephan A. and Oh, Jinook and Janisch, Judith and Stevenson, Colin and Foggett, Shaun and Wilkinson, Anna}, issn = {14359456}, journal = {Animal Cognition}, number = {4}, pages = {753--764}, publisher = {Springer Nature}, title = {{Early life differences in behavioral predispositions in two Alligatoridae species}}, doi = {10.1007/s10071-020-01461-5}, volume = {24}, year = {2021}, } @article{9100, abstract = {Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model‐based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.}, author = {Faria, Rui and Johannesson, Kerstin and Stankowski, Sean}, issn = {14209101}, journal = {Journal of Evolutionary Biology}, number = {1}, pages = {4--15}, publisher = {Wiley}, title = {{Speciation in marine environments: Diving under the surface}}, doi = {10.1111/jeb.13756}, volume = {34}, year = {2021}, } @article{9093, abstract = {We employ the Gross-Pitaevskii equation to study acoustic emission generated in a uniform Bose gas by a static impurity. The impurity excites a sound-wave packet, which propagates through the gas. We calculate the shape of this wave packet in the limit of long wave lengths, and argue that it is possible to extract properties of the impurity by observing this shape. We illustrate here this possibility for a Bose gas with a trapped impurity atom -- an example of a relevant experimental setup. Presented results are general for all one-dimensional systems described by the nonlinear Schrödinger equation and can also be used in nonatomic systems, e.g., to analyze light propagation in nonlinear optical media. Finally, we calculate the shape of the sound-wave packet for a three-dimensional Bose gas assuming a spherically symmetric perturbation.}, author = {Marchukov, Oleksandr and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, number = {2}, publisher = {SciPost Foundation}, title = {{Shape of a sound wave in a weakly-perturbed Bose gas}}, doi = {10.21468/scipostphys.10.2.025}, volume = {10}, year = {2021}, } @article{8689, abstract = {This paper continues the discussion started in [CK19] concerning Arnold's legacy on classical KAM theory and (some of) its modern developments. We prove a detailed and explicit `global' Arnold's KAM Theorem, which yields, in particular, the Whitney conjugacy of a non{degenerate, real{analytic, nearly-integrable Hamiltonian system to an integrable system on a closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates on the Kolmogorov's set are provided in the case the phase space is: (A) a uniform neighbourhood of an arbitrary (bounded) set times the d-torus and (B) a domain with C2 boundary times the d-torus. All constants are explicitly given.}, author = {Chierchia, Luigi and Koudjinan, Edmond}, issn = {1560-3547}, journal = {Regular and Chaotic Dynamics}, keywords = {Nearly{integrable Hamiltonian systems, perturbation theory, KAM Theory, Arnold's scheme, Kolmogorov's set, primary invariant tori, Lagrangian tori, measure estimates, small divisors, integrability on nowhere dense sets, Diophantine frequencies.}, number = {1}, pages = {61--88}, publisher = {Springer Nature}, title = {{V.I. Arnold's ''Global'' KAM theorem and geometric measure estimates}}, doi = {10.1134/S1560354721010044}, volume = {26}, year = {2021}, } @article{9099, abstract = {We show that on an Abelian variety over an algebraically closed field of positive characteristic, the obstruction to lifting an automorphism to a field of characteristic zero as a morphism vanishes if and only if it vanishes for lifting it as a derived autoequivalence. We also compare the deformation space of these two types of deformations.}, author = {Srivastava, Tanya K}, issn = {14208938}, journal = {Archiv der Mathematik}, number = {5}, pages = {515--527}, publisher = {Springer Nature}, title = {{Lifting automorphisms on Abelian varieties as derived autoequivalences}}, doi = {10.1007/s00013-020-01564-y}, volume = {116}, year = {2021}, } @article{9098, abstract = {We study properties of the volume of projections of the n-dimensional cross-polytope $\crosp^n = \{ x \in \R^n \mid |x_1| + \dots + |x_n| \leqslant 1\}.$ We prove that the projection of $\crosp^n$ onto a k-dimensional coordinate subspace has the maximum possible volume for k=2 and for k=3. We obtain the exact lower bound on the volume of such a projection onto a two-dimensional plane. Also, we show that there exist local maxima which are not global ones for the volume of a projection of $\crosp^n$ onto a k-dimensional subspace for any n>k⩾2.}, author = {Ivanov, Grigory}, issn = {0012365X}, journal = {Discrete Mathematics}, number = {5}, publisher = {Elsevier}, title = {{On the volume of projections of the cross-polytope}}, doi = {10.1016/j.disc.2021.112312}, volume = {344}, year = {2021}, } @article{9188, abstract = {Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.}, author = {Pauler, Florian and Hudson, Quanah and Laukoter, Susanne and Hippenmeyer, Simon}, issn = {0197-0186}, journal = {Neurochemistry International}, keywords = {Cell Biology, Cellular and Molecular Neuroscience}, number = {5}, publisher = {Elsevier}, title = {{Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond}}, doi = {10.1016/j.neuint.2021.104986}, volume = {145}, year = {2021}, } @article{9158, abstract = {While several tools have been developed to study the ground state of many-body quantum spin systems, the limitations of existing techniques call for the exploration of new approaches. In this manuscript we develop an alternative analytical and numerical framework for many-body quantum spin ground states, based on the disentanglement formalism. In this approach, observables are exactly expressed as Gaussian-weighted functional integrals over scalar fields. We identify the leading contribution to these integrals, given by the saddle point of a suitable effective action. Analytically, we develop a field-theoretical expansion of the functional integrals, performed by means of appropriate Feynman rules. The expansion can be truncated to a desired order to obtain analytical approximations to observables. Numerically, we show that the disentanglement approach can be used to compute ground state expectation values from classical stochastic processes. While the associated fluctuations grow exponentially with imaginary time and the system size, this growth can be mitigated by means of an importance sampling scheme based on knowledge of the saddle point configuration. We illustrate the advantages and limitations of our methods by considering the quantum Ising model in 1, 2 and 3 spatial dimensions. Our analytical and numerical approaches are applicable to a broad class of systems, bridging concepts from quantum lattice models, continuum field theory, and classical stochastic processes.}, author = {De Nicola, Stefano}, issn = {1742-5468}, journal = {Journal of Statistical Mechanics: Theory and Experiment}, keywords = {Statistics, Probability and Uncertainty, Statistics and Probability, Statistical and Nonlinear Physics}, number = {1}, publisher = {IOP Publishing}, title = {{Disentanglement approach to quantum spin ground states: Field theory and stochastic simulation}}, doi = {10.1088/1742-5468/abc7c7}, volume = {2021}, year = {2021}, } @article{9118, abstract = {Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm–3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.}, author = {Calcabrini, Mariano and Genc, Aziz and Liu, Yu and Kleinhanns, Tobias and Lee, Seungho and Dirin, Dmitry N. and Akkerman, Quinten A. and Kovalenko, Maksym V. and Arbiol, Jordi and Ibáñez, Maria}, issn = {2380-8195}, journal = {ACS Energy Letters}, number = {2}, pages = {581--587}, publisher = {American Chemical Society}, title = {{Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites}}, doi = {10.1021/acsenergylett.0c02448}, volume = {6}, year = {2021}, } @article{9168, abstract = {Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.}, author = {Fraisse, Christelle and Sachdeva, Himani}, issn = {1943-2631}, journal = {Genetics}, number = {2}, publisher = {Genetics Society of America}, title = {{The rates of introgression and barriers to genetic exchange between hybridizing species: Sex chromosomes vs autosomes}}, doi = {10.1093/genetics/iyaa025}, volume = {217}, year = {2021}, } @article{9113, abstract = {“Hydrogen economy” could enable a carbon-neutral sustainable energy chain. However, issues with safety, storage, and transport of molecular hydrogen impede its realization. Alcohols as liquid H2 carriers could be enablers, but state-of-the-art reforming is difficult, requiring high temperatures >200 °C and pressures >25 bar, and the resulting H2 is carbonized beyond tolerance levels for direct use in fuel cells. Here, we demonstrate ambient temperature and pressure alcohol reforming in a fuel cell (ARFC) with a simultaneous electrical power output. The alcohol is oxidized at the alkaline anode, where the resulting CO2 is sequestrated as carbonate. Carbon-free H2 is liberated at the acidic cathode. The neutralization energy between the alkaline anode and the acidic cathode drives the process, particularly the unusually high entropy gain (1.27-fold ΔH). The significantly positive temperature coefficient of the resulting electromotive force allows us to harvest a large fraction of the output energy from the surrounding, achieving a thermodynamic efficiency as high as 2.27. MoS2 as the cathode catalyst allows alcohol reforming even under open-air conditions, a challenge that state-of-the-art alcohol reforming failed to overcome. We further show reforming of a wide range of alcohols. The ARFC offers an unprecedented route toward hydrogen economy as CO2 is simultaneously captured and pure H2 produced at mild conditions.}, author = {Manzoor Bhat, Zahid Manzoor and Thimmappa, Ravikumar and Dargily, Neethu Christudas and Raafik, Abdul and Kottaichamy, Alagar Raja and Devendrachari, Mruthyunjayachari Chattanahalli and Itagi, Mahesh and Makri Nimbegondi Kotresh, Harish and Freunberger, Stefan Alexander and Ottakam Thotiyl, Musthafa }, issn = {2168-0485}, journal = {ACS Sustainable Chemistry and Engineering}, number = {8}, pages = {3104--3111}, publisher = {American Chemical Society}, title = {{Ambient condition alcohol reforming to hydrogen with electricity output}}, doi = {10.1021/acssuschemeng.0c07547}, volume = {9}, year = {2021}, } @article{9119, abstract = {We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single‐population or two‐population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.}, author = {Fraisse, Christelle and Popovic, Iva and Mazoyer, Clément and Spataro, Bruno and Delmotte, Stéphane and Romiguier, Jonathan and Loire, Étienne and Simon, Alexis and Galtier, Nicolas and Duret, Laurent and Bierne, Nicolas and Vekemans, Xavier and Roux, Camille}, issn = {17550998}, journal = {Molecular Ecology Resources}, pages = {2629--2644}, publisher = {Wiley}, title = {{DILS: Demographic inferences with linked selection by using ABC}}, doi = {10.1111/1755-0998.13323}, volume = {21}, year = {2021}, } @article{9173, abstract = {We show that Hilbert schemes of points on supersingular Enriques surface in characteristic 2, Hilbn(X), for n ≥ 2 are simply connected, symplectic varieties but are not irreducible symplectic as the hodge number h2,0 > 1, even though a supersingular Enriques surface is an irreducible symplectic variety. These are the classes of varieties which appear only in characteristic 2 and they show that the hodge number formula for G¨ottsche-Soergel does not hold over haracteristic 2. It also gives examples of varieties with trivial canonical class which are neither irreducible symplectic nor Calabi-Yau, thereby showing that there are strictly more classes of simply connected varieties with trivial canonical class in characteristic 2 than over C as given by Beauville-Bogolomov decomposition theorem.}, author = {Srivastava, Tanya K}, issn = {0007-4497}, journal = {Bulletin des Sciences Mathematiques}, number = {03}, publisher = {Elsevier}, title = {{Pathologies of the Hilbert scheme of points of a supersingular Enriques surface}}, doi = {10.1016/j.bulsci.2021.102957}, volume = {167}, year = {2021}, } @inproceedings{9200, abstract = {Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach.}, author = {Garcia Soto, Miriam and Henzinger, Thomas A and Schilling, Christian}, booktitle = {HSCC '21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control}, isbn = {9781450383394}, keywords = {hybrid automaton, membership, system identification}, location = {Nashville, TN, United States}, pages = {2102.12734}, publisher = {Association for Computing Machinery}, title = {{Synthesis of hybrid automata with affine dynamics from time-series data}}, doi = {10.1145/3447928.3456704}, year = {2021}, } @article{9205, abstract = {Cryo-EM grid preparation is an important bottleneck in protein structure determination, especially for membrane proteins, typically requiring screening of a large number of conditions. We systematically investigated the effects of buffer components, blotting conditions and grid types on the outcome of grid preparation of five different membrane protein samples. Aggregation was the most common type of problem which was addressed by changing detergents, salt concentration or reconstitution of proteins into nanodiscs or amphipols. We show that the optimal concentration of detergent is between 0.05 and 0.4% and that the presence of a low concentration of detergent with a high critical micellar concentration protects the proteins from denaturation at the air-water interface. Furthermore, we discuss the strategies for achieving an adequate ice thickness, particle coverage and orientation distribution on free ice and on support films. Our findings provide a clear roadmap for comprehensive screening of conditions for cryo-EM grid preparation of membrane proteins.}, author = {Kampjut, Domen and Steiner, Julia and Sazanov, Leonid A}, issn = {25890042}, journal = {iScience}, number = {3}, publisher = {Elsevier}, title = {{Cryo-EM grid optimization for membrane proteins}}, doi = {10.1016/j.isci.2021.102139}, volume = {24}, year = {2021}, } @article{9207, abstract = {In this paper we experimentally study the transitional range of Reynolds numbers in plane Couette–Poiseuille flow, focusing our attention on the localized turbulent structures triggered by a strong impulsive jet and the large-scale flow generated around these structures. We present a detailed investigation of the large-scale flow and show how its amplitude depends on Reynolds number and amplitude perturbation. In addition, we characterize the initial dynamics of the localized turbulent spot, which includes the coupling between the small and large scales, as well as the dependence of the advection speed on the large-scale flow generated around the spot. Finally, we provide the first experimental measurements of the large-scale flow around an oblique turbulent band.}, author = {Klotz, Lukasz and Pavlenko, A. M. and Wesfreid, J. E.}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge University Press}, title = {{Experimental measurements in plane Couette-Poiseuille flow: Dynamics of the large- and small-scale flow}}, doi = {10.1017/jfm.2020.1089}, volume = {912}, year = {2021}, } @article{9206, abstract = {The precise engineering of thermoelectric materials using nanocrystals as their building blocks has proven to be an excellent strategy to increase energy conversion efficiency. Here we present a synthetic route to produce Sb-doped PbS colloidal nanoparticles. These nanoparticles are then consolidated into nanocrystalline PbS:Sb using spark plasma sintering. We demonstrate that the introduction of Sb significantly influences the size, geometry, crystal lattice and especially the carrier concentration of PbS. The increase of charge carrier concentration achieved with the introduction of Sb translates into an increase of the electrical and thermal conductivities and a decrease of the Seebeck coefficient. Overall, PbS:Sb nanomaterial were characterized by two-fold higher thermoelectric figures of merit than undoped PbS. }, author = {Cadavid, Doris and Wei, Kaya and Liu, Yu and Zhang, Yu and Li, Mengyao and Genç, Aziz and Berestok, Taisiia and Ibáñez, Maria and Shavel, Alexey and Nolas, George S. and Cabot, Andreu}, issn = {1996-1944}, journal = {Materials}, number = {4}, publisher = {MDPI}, title = {{Synthesis, bottom up assembly and thermoelectric properties of Sb-doped PbS nanocrystal building blocks}}, doi = {10.3390/ma14040853}, volume = {14}, year = {2021}, } @article{9226, abstract = {Half a century after Lewis Wolpert's seminal conceptual advance on how cellular fates distribute in space, we provide a brief historical perspective on how the concept of positional information emerged and influenced the field of developmental biology and beyond. We focus on a modern interpretation of this concept in terms of information theory, largely centered on its application to cell specification in the early Drosophila embryo. We argue that a true physical variable (position) is encoded in local concentrations of patterning molecules, that this mapping is stochastic, and that the processes by which positions and corresponding cell fates are determined based on these concentrations need to take such stochasticity into account. With this approach, we shift the focus from biological mechanisms, molecules, genes and pathways to quantitative systems-level questions: where does positional information reside, how it is transformed and accessed during development, and what fundamental limits it is subject to?}, author = {Tkačik, Gašper and Gregor, Thomas}, issn = {1477-9129}, journal = {Development}, number = {2}, publisher = {The Company of Biologists}, title = {{The many bits of positional information}}, doi = {10.1242/dev.176065}, volume = {148}, year = {2021}, } @article{9240, abstract = {A stochastic PDE, describing mesoscopic fluctuations in systems of weakly interacting inertial particles of finite volume, is proposed and analysed in any finite dimension . It is a regularised and inertial version of the Dean–Kawasaki model. A high-probability well-posedness theory for this model is developed. This theory improves significantly on the spatial scaling restrictions imposed in an earlier work of the same authors, which applied only to significantly larger particles in one dimension. The well-posedness theory now applies in d-dimensions when the particle-width ϵ is proportional to for and N is the number of particles. This scaling is optimal in a certain Sobolev norm. Key tools of the analysis are fractional Sobolev spaces, sharp bounds on Bessel functions, separability of the regularisation in the d-spatial dimensions, and use of the Faà di Bruno's formula.}, author = {Cornalba, Federico and Shardlow, Tony and Zimmer, Johannes}, issn = {1090-2732}, journal = {Journal of Differential Equations}, number = {5}, pages = {253--283}, publisher = {Elsevier}, title = {{Well-posedness for a regularised inertial Dean–Kawasaki model for slender particles in several space dimensions}}, doi = {10.1016/j.jde.2021.02.048}, volume = {284}, year = {2021}, } @inproceedings{9253, abstract = {In March 2020, the Austrian government introduced a widespread lock-down in response to the COVID-19 pandemic. Based on subjective impressions and anecdotal evidence, Austrian public and private life came to a sudden halt. Here we assess the effect of the lock-down quantitatively for all regions in Austria and present an analysis of daily changes of human mobility throughout Austria using near-real-time anonymized mobile phone data. We describe an efficient data aggregation pipeline and analyze the mobility by quantifying mobile-phone traffic at specific point of interests (POIs), analyzing individual trajectories and investigating the cluster structure of the origin-destination graph. We found a reduction of commuters at Viennese metro stations of over 80% and the number of devices with a radius of gyration of less than 500 m almost doubled. The results of studying crowd-movement behavior highlight considerable changes in the structure of mobility networks, revealed by a higher modularity and an increase from 12 to 20 detected communities. We demonstrate the relevance of mobility data for epidemiological studies by showing a significant correlation of the outflow from the town of Ischgl (an early COVID-19 hotspot) and the reported COVID-19 cases with an 8-day time lag. This research indicates that mobile phone usage data permits the moment-by-moment quantification of mobility behavior for a whole country. We emphasize the need to improve the availability of such data in anonymized form to empower rapid response to combat COVID-19 and future pandemics.}, author = {Heiler, Georg and Reisch, Tobias and Hurt, Jan and Forghani, Mohammad and Omani, Aida and Hanbury, Allan and Karimipour, Farid}, booktitle = {2020 IEEE International Conference on Big Data}, isbn = {9781728162515}, location = {Atlanta, GA, United States}, pages = {3123--3132}, publisher = {IEEE}, title = {{Country-wide mobility changes observed using mobile phone data during COVID-19 pandemic}}, doi = {10.1109/bigdata50022.2020.9378374}, year = {2021}, } @article{9228, abstract = {Legacy conferences are costly and time consuming, and exclude scientists lacking various resources or abilities. During the 2020 pandemic, we created an online conference platform, Neuromatch Conferences (NMC), aimed at developing technological and cultural changes to make conferences more democratic, scalable, and accessible. We discuss the lessons we learned.}, author = {Achakulvisut, Titipat and Ruangrong, Tulakan and Mineault, Patrick and Vogels, Tim P and Peters, Megan A.K. and Poirazi, Panayiota and Rozell, Christopher and Wyble, Brad and Goodman, Dan F.M. and Kording, Konrad Paul}, issn = {1879-307X}, journal = {Trends in Cognitive Sciences}, number = {4}, pages = {265--268}, publisher = {Elsevier}, title = {{Towards democratizing and automating online conferences: Lessons from the Neuromatch Conferences}}, doi = {10.1016/j.tics.2021.01.007}, volume = {25}, year = {2021}, } @article{9224, abstract = {We re-examine attempts to study the many-body localization transition using measures that are physically natural on the ergodic/quantum chaotic regime of the phase diagram. Using simple scaling arguments and an analysis of various models for which rigorous results are available, we find that these measures can be particularly adversely affected by the strong finite-size effects observed in nearly all numerical studies of many-body localization. This severely impacts their utility in probing the transition and the localized phase. In light of this analysis, we discuss a recent study (Šuntajs et al., 2020) of the behaviour of the Thouless energy and level repulsion in disordered spin chains, and its implications for the question of whether MBL is a true phase of matter.}, author = {Abanin, D. A. and Bardarson, J. H. and De Tomasi, G. and Gopalakrishnan, S. and Khemani, V. and Parameswaran, S. A. and Pollmann, F. and Potter, A. C. and Serbyn, Maksym and Vasseur, R.}, issn = {1096035X}, journal = {Annals of Physics}, number = {4}, publisher = {Elsevier}, title = {{Distinguishing localization from chaos: Challenges in finite-size systems}}, doi = {10.1016/j.aop.2021.168415}, volume = {427}, year = {2021}, } @article{9239, abstract = {A graph game proceeds as follows: two players move a token through a graph to produce a finite or infinite path, which determines the payoff of the game. We study bidding games in which in each turn, an auction determines which player moves the token. Bidding games were largely studied in combination with two variants of first-price auctions called “Richman” and “poorman” bidding. We study taxman bidding, which span the spectrum between the two. The game is parameterized by a constant : portion τ of the winning bid is paid to the other player, and portion to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games: we unify, generalize, and simplify previous equivalences between bidding games and a class of stochastic games called random-turn games.}, author = {Avni, Guy and Henzinger, Thomas A and Žikelić, Đorđe}, issn = {1090-2724}, journal = {Journal of Computer and System Sciences}, number = {8}, pages = {133--144}, publisher = {Elsevier}, title = {{Bidding mechanisms in graph games}}, doi = {10.1016/j.jcss.2021.02.008}, volume = {119}, year = {2021}, } @article{9244, abstract = {Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.}, author = {Hankeova, Simona and Salplachta, Jakub and Zikmund, Tomas and Kavkova, Michaela and Van Hul, Noémi and Brinek, Adam and Smekalova, Veronika and Laznovsky, Jakub and Dawit, Feven and Jaros, Josef and Bryja, Vítězslav and Lendahl, Urban and Ellis, Ewa and Nemeth, Antal and Fischler, Björn and Hannezo, Edouard B and Kaiser, Jozef and Andersson, Emma Rachel}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for alagille syndrome}}, doi = {10.7554/eLife.60916}, volume = {10}, year = {2021}, } @article{9241, abstract = {Volumetric light transport is a pervasive physical phenomenon, and therefore its accurate simulation is important for a broad array of disciplines. While suitable mathematical models for computing the transport are now available, obtaining the necessary material parameters needed to drive such simulations is a challenging task: direct measurements of these parameters from material samples are seldom possible. Building on the inverse scattering paradigm, we present a novel measurement approach which indirectly infers the transport parameters from extrinsic observations of multiple-scattered radiance. The novelty of the proposed approach lies in replacing structured illumination with a structured reflector bonded to the sample, and a robust fitting procedure that largely compensates for potential systematic errors in the calibration of the setup. We show the feasibility of our approach by validating simulations of complex 3D compositions of the measured materials against physical prints, using photo-polymer resins. As presented in this paper, our technique yields colorspace data suitable for accurate appearance reproduction in the area of 3D printing. Beyond that, and without fundamental changes to the basic measurement methodology, it could equally well be used to obtain spectral measurements that are useful for other application areas.}, author = {Elek, Oskar and Zhang, Ran and Sumin, Denis and Myszkowski, Karol and Bickel, Bernd and Wilkie, Alexander and Křivánek, Jaroslav and Weyrich, Tim}, issn = {1094-4087}, journal = {Optics Express}, number = {5}, pages = {7568--7588}, publisher = {The Optical Society}, title = {{Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing}}, doi = {10.1364/OE.406095}, volume = {29}, year = {2021}, } @article{9243, abstract = {Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.}, author = {Hernández-Rocamora, Víctor M. and Baranova, Natalia S. and Peters, Katharina and Breukink, Eefjan and Loose, Martin and Vollmer, Waldemar}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Real time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin binding proteins}}, doi = {10.7554/eLife.61525}, volume = {10}, year = {2021}, } @article{9246, abstract = {We consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.}, author = {Leopold, Nikolai K and Mitrouskas, David Johannes and Seiringer, Robert}, issn = {14320673}, journal = {Archive for Rational Mechanics and Analysis}, pages = {383--417}, publisher = {Springer Nature}, title = {{Derivation of the Landau–Pekar equations in a many-body mean-field limit}}, doi = {10.1007/s00205-021-01616-9}, volume = {240}, year = {2021}, }