@article{9301,
abstract = {Electrodepositing insulating lithium peroxide (Li2O2) is the key process during discharge of aprotic Li–O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and dissolved lithium superoxide governs whether Li2O2 grows as a conformal surface film or larger particles, leading to low or high capacities, respectively. However, better understanding governing factors for Li2O2 packing density and capacity requires structural sensitive in situ metrologies. Here, we establish in situ small- and wide-angle X-ray scattering (SAXS/WAXS) as a suitable method to record the Li2O2 phase evolution with atomic to submicrometer resolution during cycling a custom-built in situ Li–O2 cell. Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative structural information from complex multiphase systems. Surprisingly, we find that features are absent that would point at a Li2O2 surface film formed via two consecutive electron transfers, even in poorly solvating electrolytes thought to be prototypical for surface growth. All scattering data can be modeled by stacks of thin Li2O2 platelets potentially forming large toroidal particles. Li2O2 solution growth is further justified by rotating ring-disk electrode measurements and electron microscopy. Higher discharge overpotentials lead to smaller Li2O2 particles, but there is no transition to an electronically passivating, conformal Li2O2 coating. Hence, mass transport of reactive species rather than electronic transport through a Li2O2 film limits the discharge capacity. Provided that species mobilities and carbon surface areas are high, this allows for high discharge capacities even in weakly solvating electrolytes. The currently accepted Li–O2 reaction mechanism ought to be reconsidered.},
author = {Prehal, Christian and Samojlov, Aleksej and Nachtnebel, Manfred and Lovicar, Ludek and Kriechbaum, Manfred and Amenitsch, Heinz and Freunberger, Stefan Alexander},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
keywords = {small-angle X-ray scattering, oxygen reduction, disproportionation, Li-air battery},
number = {14},
publisher = {National Academy of Sciences},
title = {{In situ small-angle X-ray scattering reveals solution phase discharge of Li–O2 batteries with weakly solvating electrolytes}},
doi = {10.1073/pnas.2021893118},
volume = {118},
year = {2021},
}
@article{9443,
abstract = {Endoplasmic reticulum–plasma membrane contact sites (ER–PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER–PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER–PM tether that also functions in maintaining PM integrity. The ER–PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.},
author = {Ruiz-Lopez, N and Pérez-Sancho, J and Esteban Del Valle, A and Haslam, RP and Vanneste, S and Catalá, R and Perea-Resa, C and Van Damme, D and García-Hernández, S and Albert, A and Vallarino, J and Lin, J and Friml, Jiří and Macho, AP and Salinas, J and Rosado, A and Napier, JA and Amorim-Silva, V and Botella, MA},
issn = {1040-4651},
journal = {Plant Cell},
publisher = {American Society of Plant Biologists},
title = {{Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress}},
doi = {10.1093/plcell/koab122},
year = {2021},
}
@article{9447,
abstract = {Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) based water-in-salt electrolytes (WiSEs) has recently emerged as a new promising class of electrolytes, primarily owing to their wide electrochemical stability windows (~3–4 V), that by far exceed the thermodynamic stability window of water (1.23 V). Upon increasing the salt concentration towards superconcentration the onset of the oxygen evolution reaction (OER) shifts more significantly than the hydrogen evolution reaction (HER) does. The OER shift has been explained by the accumulation of hydrophobic anions blocking water access to the electrode surface, hence by double layer theory. Here we demonstrate that the processes during oxidation are much more complex, involving OER, carbon and salt decomposition by OER intermediates, and salt precipitation upon local oversaturation. The positive shift in the onset potential of oxidation currents was elucidated by combining several advanced analysis techniques: rotating ring-disk electrode voltammetry, online electrochemical mass spectrometry, and X-ray photoelectron spectroscopy, using both dilute and superconcentrated electrolytes. The results demonstrate the importance of reactive OER intermediates and surface films for electrolyte and electrode stability and motivate further studies of the nature of the electrode.},
author = {Maffre, Marion and Bouchal, Roza and Freunberger, Stefan Alexander and Lindahl, Niklas and Johansson, Patrik and Favier, Frédéric and Fontaine, Olivier and Bélanger, Daniel},
issn = {0013-4651},
journal = {Journal of The Electrochemical Society},
keywords = {Renewable Energy, Sustainability and the Environment, Electrochemistry, Materials Chemistry, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Condensed Matter Physics},
number = {5},
publisher = {IOP Publishing},
title = {{Investigation of electrochemical and chemical processes occurring at positive potentials in “Water-in-Salt” electrolytes}},
doi = {10.1149/1945-7111/ac0300},
volume = {168},
year = {2021},
}
@article{9465,
abstract = {Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton and Osang, Georg F},
issn = {14208997},
journal = {Journal of Geometry},
number = {1},
publisher = {Springer Nature},
title = {{A step in the Delaunay mosaic of order k}},
doi = {10.1007/s00022-021-00577-4},
volume = {112},
year = {2021},
}
@inproceedings{9464,
abstract = {We firstly introduce the self-assembled growth of highly uniform Ge quantum wires with controllable position, distance and length on patterned Si (001) substrates. We then present the electrically tunable strong spin-orbit coupling, the first Ge hole spin qubit and ultrafast operation of hole spin qubit in the Ge/Si quantum wires.},
author = {Gao, Fei and Zhang, Jie Yin and Wang, Jian Huan and Ming, Ming and Wang, Tina and Zhang, Jian Jun and Watzinger, Hannes and Kukucka, Josip and Vukušić, Lada and Katsaros, Georgios and Wang, Ke and Xu, Gang and Li, Hai Ou and Guo, Guo Ping},
booktitle = {2021 5th IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2021},
isbn = {9781728181769},
location = {Virtual},
publisher = {IEEE},
title = {{Ge/Si quantum wires for quantum computing}},
doi = {10.1109/EDTM50988.2021.9420817},
year = {2021},
}
@article{9469,
abstract = {In this paper, we consider reflected three-operator splitting methods for monotone inclusion problems in real Hilbert spaces. To do this, we first obtain weak convergence analysis and nonasymptotic O(1/n) convergence rate of the reflected Krasnosel'skiĭ-Mann iteration for finding a fixed point of nonexpansive mapping in real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. We then apply our results to three-operator splitting for the monotone inclusion problem and consequently obtain the corresponding convergence analysis. Furthermore, we derive reflected primal-dual algorithms for highly structured monotone inclusion problems. Some numerical implementations are drawn from splitting methods to support the theoretical analysis.},
author = {Iyiola, Olaniyi S. and Enyi, Cyril D. and Shehu, Yekini},
issn = {10294937},
journal = {Optimization Methods and Software},
publisher = {Taylor and Francis},
title = {{Reflected three-operator splitting method for monotone inclusion problem}},
doi = {10.1080/10556788.2021.1924715},
year = {2021},
}
@article{9470,
abstract = {A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.},
author = {Berdan, Emma L. and Blanckaert, Alexandre and Slotte, Tanja and Suh, Alexander and Westram, Anja M and Fragata, Inês},
issn = {1365294X},
journal = {Molecular Ecology},
number = {12},
pages = {2710--2723},
publisher = {Wiley},
title = {{Unboxing mutations: Connecting mutation types with evolutionary consequences}},
doi = {10.1111/mec.15936},
volume = {30},
year = {2021},
}
@article{9468,
abstract = {Motivated by the successful application of geometry to proving the Harary--Hill conjecture for “pseudolinear” drawings of $K_n$, we introduce “pseudospherical” drawings of graphs. A spherical drawing of a graph $G$ is a drawing in the unit sphere $\mathbb{S}^2$ in which the vertices of $G$ are represented as points---no three on a great circle---and the edges of $G$ are shortest-arcs in $\mathbb{S}^2$ connecting pairs of vertices. Such a drawing has three properties: (1) every edge $e$ is contained in a simple closed curve $\gamma_e$ such that the only vertices in $\gamma_e$ are the ends of $e$; (2) if $e\ne f$, then $\gamma_e\cap\gamma_f$ has precisely two crossings; and (3) if $e\ne f$, then $e$ intersects $\gamma_f$ at most once, in either a crossing or an end of $e$. We use properties (1)--(3) to define a pseudospherical drawing of $G$. Our main result is that for the complete graph, properties (1)--(3) are equivalent to the same three properties but with “precisely two crossings” in (2) replaced by “at most two crossings.” The proof requires a result in the geometric transversal theory of arrangements of pseudocircles. This is proved using the surprising result that the absence of special arcs (coherent spirals) in an arrangement of simple closed curves characterizes the fact that any two curves in the arrangement have at most two crossings. Our studies provide the necessary ideas for exhibiting a drawing of $K_{10}$ that has no extension to an arrangement of pseudocircles and a drawing of $K_9$ that does extend to an arrangement of pseudocircles, but no such extension has all pairs of pseudocircles crossing twice.
},
author = {Arroyo Guevara, Alan M and Richter, R. Bruce and Sunohara, Matthew},
issn = {08954801},
journal = {SIAM Journal on Discrete Mathematics},
number = {2},
pages = {1050--1076},
publisher = {Society for Industrial and Applied Mathematics},
title = {{Extending drawings of complete graphs into arrangements of pseudocircles}},
doi = {10.1137/20M1313234},
volume = {35},
year = {2021},
}
@article{8546,
abstract = {Brain neurons arise from relatively few progenitors generating an enormous diversity of neuronal types. Nonetheless, a cardinal feature of mammalian brain neurogenesis is thought to be that excitatory and inhibitory neurons derive from separate, spatially segregated progenitors. Whether bi-potential progenitors with an intrinsic capacity to generate both lineages exist and how such a fate decision may be regulated are unknown. Using cerebellar development as a model, we discover that individual progenitors can give rise to both inhibitory and excitatory lineages. Gradations of Notch activity determine the fates of the progenitors and their daughters. Daughters with the highest levels of Notch activity retain the progenitor fate, while intermediate levels of Notch activity generate inhibitory neurons, and daughters with very low levels of Notch signaling adopt the excitatory fate. Therefore, Notch-mediated binary cell fate choice is a mechanism for regulating the ratio of excitatory to inhibitory neurons from common progenitors.},
author = {Zhang, Tingting and Liu, Tengyuan and Mora, Natalia and Guegan, Justine and Bertrand, Mathilde and Contreras, Ximena and Hansen, Andi H and Streicher, Carmen and Anderle, Marica and Danda, Natasha and Tiberi, Luca and Hippenmeyer, Simon and Hassan, Bassem A.},
issn = { 22111247},
journal = {Cell Reports},
number = {10},
publisher = {Elsevier},
title = {{Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum}},
doi = {10.1016/j.celrep.2021.109208},
volume = {35},
year = {2021},
}
@article{9550,
abstract = {We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices. },
author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin},
issn = {20505094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Equipartition principle for Wigner matrices}},
doi = {10.1017/fms.2021.38},
volume = {9},
year = {2021},
}
@article{9429,
abstract = {De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.},
author = {Morandell, Jasmin and Schwarz, Lena A and Basilico, Bernadette and Tasciyan, Saren and Dimchev, Georgi A and Nicolas, Armel and Sommer, Christoph M and Kreuzinger, Caroline and Dotter, Christoph and Knaus, Lisa and Dobler, Zoe and Cacci, Emanuele and Schur, Florian KM and Danzl, Johann G and Novarino, Gaia},
issn = {2041-1723},
journal = {Nature Communications},
keywords = {General Biochemistry, Genetics and Molecular Biology},
number = {1},
publisher = {Springer Nature},
title = {{Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development}},
doi = {10.1038/s41467-021-23123-x},
volume = {12},
year = {2021},
}
@article{9540,
abstract = {The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2′-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.},
author = {Prattes, Michael and Grishkovskaya, Irina and Hodirnau, Victor-Valentin and Rössler, Ingrid and Klein, Isabella and Hetzmannseder, Christina and Zisser, Gertrude and Gruber, Christian C. and Gruber, Karl and Haselbach, David and Bergler, Helmut},
issn = {2041-1723},
journal = {Nature Communications},
keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry},
number = {1},
publisher = {Springer Nature},
title = {{Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine}},
doi = {10.1038/s41467-021-23854-x},
volume = {12},
year = {2021},
}
@article{9549,
abstract = {AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties. },
author = {Zhang, Danyang and Watson, Jake and Matthews, Peter M. and Cais, Ondrej and Greger, Ingo H.},
issn = {14764687},
journal = {Nature},
publisher = {Springer Nature},
title = {{Gating and modulation of a hetero-octameric AMPA glutamate receptor}},
doi = {10.1038/s41586-021-03613-0},
year = {2021},
}
@article{9462,
abstract = {We consider a system of N trapped bosons with repulsive interactions in a combined semiclassical mean-field limit at positive temperature. We show that the free energy is well approximated by the minimum of the Hartree free energy functional – a natural extension of the Hartree energy functional to positive temperatures. The Hartree free energy functional converges in the same limit to a semiclassical free energy functional, and we show that the system displays Bose–Einstein condensation if and only if it occurs in the semiclassical free energy functional. This allows us to show that for weak coupling the critical temperature decreases due to the repulsive interactions.},
author = {Deuchert, Andreas and Seiringer, Robert},
issn = {10960783},
journal = {Journal of Functional Analysis},
number = {6},
publisher = {Elsevier},
title = {{Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons}},
doi = {10.1016/j.jfa.2021.109096},
volume = {281},
year = {2021},
}
@article{9547,
abstract = {With the wider availability of full-color 3D printers, color-accurate 3D-print preparation has received increased attention. A key challenge lies in the inherent translucency of commonly used print materials that blurs out details of the color texture. Previous work tries to compensate for these scattering effects through strategic assignment of colored primary materials to printer voxels. To date, the highest-quality approach uses iterative optimization that relies on computationally expensive Monte Carlo light transport simulation to predict the surface appearance from subsurface scattering within a given print material distribution; that optimization, however, takes in the order of days on a single machine. In our work, we dramatically speed up the process by replacing the light transport simulation with a data-driven approach. Leveraging a deep neural network to predict the scattering within a highly heterogeneous medium, our method performs around two orders of magnitude faster than Monte Carlo rendering while yielding optimization results of similar quality level. The network is based on an established method from atmospheric cloud rendering, adapted to our domain and extended by a physically motivated weight sharing scheme that substantially reduces the network size. We analyze its performance in an end-to-end print preparation pipeline and compare quality and runtime to alternative approaches, and demonstrate its generalization to unseen geometry and material values. This for the first time enables full heterogenous material optimization for 3D-print preparation within time frames in the order of the actual printing time.},
author = {Rittig, Tobias and Sumin, Denis and Babaei, Vahid and Didyk, Piotr and Voloboy, Alexey and Wilkie, Alexander and Bickel, Bernd and Myszkowski, Karol and Weyrich, Tim and Křivánek, Jaroslav},
issn = {14678659},
journal = {Computer Graphics Forum},
number = {2},
pages = {205--219},
publisher = {Wiley},
title = {{Neural acceleration of scattering-aware color 3D printing}},
doi = {10.1111/cgf.142626},
volume = {40},
year = {2021},
}
@article{9541,
abstract = {The Massively Parallel Computation (MPC) model is an emerging model that distills core aspects of distributed and parallel computation, developed as a tool to solve combinatorial (typically graph) problems in systems of many machines with limited space. Recent work has focused on the regime in which machines have sublinear (in n, the number of nodes in the input graph) space, with randomized algorithms presented for the fundamental problems of Maximal Matching and Maximal Independent Set. However, there have been no prior corresponding deterministic algorithms. A major challenge underlying the sublinear space setting is that the local space of each machine might be too small to store all edges incident to a single node. This poses a considerable obstacle compared to classical models in which each node is assumed to know and have easy access to its incident edges. To overcome this barrier, we introduce a new graph sparsification technique that deterministically computes a low-degree subgraph, with the additional property that solving the problem on this subgraph provides significant progress towards solving the problem for the original input graph. Using this framework to derandomize the well-known algorithm of Luby [SICOMP’86], we obtain O(log Δ + log log n)-round deterministic MPC algorithms for solving the problems of Maximal Matching and Maximal Independent Set with O(nɛ) space on each machine for any constant ɛ > 0. These algorithms also run in O(log Δ) rounds in the closely related model of CONGESTED CLIQUE, improving upon the state-of-the-art bound of O(log 2Δ) rounds by Censor-Hillel et al. [DISC’17].},
author = {Czumaj, Artur and Davies, Peter and Parter, Merav},
issn = {1549-6333},
journal = {ACM Transactions on Algorithms},
number = {2},
publisher = {ACM},
title = {{Graph sparsification for derandomizing massively parallel computation with low space}},
doi = {10.1145/3451992},
volume = {17},
year = {2021},
}
@article{9607,
abstract = {While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Numerous analyses conducted to date have clearly identified measures that need to be taken to improve research rigor. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e., performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.},
author = {Bespalov, Anton and Bernard, René and Gilis, Anja and Gerlach, Björn and Guillén, Javier and Castagné, Vincent and Lefevre, Isabel A. and Ducrey, Fiona and Monk, Lee and Bongiovanni, Sandrine and Altevogt, Bruce and Arroyo-Araujo, María and Bikovski, Lior and De Bruin, Natasja and Castaños-Vélez, Esmeralda and Dityatev, Alexander and Emmerich, Christoph H. and Fares, Raafat and Ferland-Beckham, Chantelle and Froger-Colléaux, Christelle and Gailus-Durner, Valerie and Hölter, Sabine M. and Hofmann, Martine Cj and Kabitzke, Patricia and Kas, Martien Jh and Kurreck, Claudia and Moser, Paul and Pietraszek, Malgorzata and Popik, Piotr and Potschka, Heidrun and Prado Montes De Oca, Ernesto and Restivo, Leonardo and Riedel, Gernot and Ritskes-Hoitinga, Merel and Samardzic, Janko and Schunn, Michael and Stöger, Claudia and Voikar, Vootele and Vollert, Jan and Wever, Kimberley E. and Wuyts, Kathleen and Macleod, Malcolm R. and Dirnagl, Ulrich and Steckler, Thomas},
issn = {2050084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Introduction to the EQIPD quality system}},
doi = {10.7554/eLife.63294},
volume = {10},
year = {2021},
}
@article{9569,
abstract = {We report the synthesis and characterization of graphene functionalized with iron (Fe3+) oxide (G-Fe3O4) nanohybrids for radio-frequency magnetic hyperthermia application. We adopted the wet chemical procedure, using various contents of Fe3O4 (magnetite) from 0–100% for making two-dimensional graphene–Fe3O4 nanohybrids. The homogeneous dispersal of Fe3O4 nanoparticles decorated on the graphene surface combined with their biocompatibility and high thermal conductivity make them an excellent material for magnetic hyperthermia. The morphological and magnetic properties of the nanohybrids were studied using scanning electron microscopy (SEM) and a vibrating sample magnetometer (VSM), respectively. The smart magnetic platforms were exposed to an alternating current (AC) magnetic field of 633 kHz and of strength 9.1 mT for studying their hyperthermic performance. The localized antitumor effects were investigated with artificial neural network modeling. A neural net time-series model was developed for the assessment of the best nanohybrid composition to serve the purpose with an accuracy close to 100%. Six Nonlinear Autoregressive with External Input (NARX) models were obtained, one for each of the components. The assessment of the accuracy of the predicted results has been done on the basis of Mean Squared Error (MSE). The highest Mean Squared Error value was obtained for the nanohybrid containing 45% magnetite and 55% graphene (F45G55) in the training phase i.e., 0.44703, which is where the model achieved optimal results after 71 epochs. The F45G55 nanohybrid was found to be the best for hyperthermia applications in low dosage with the highest specific absorption rate (SAR) and mean squared error values.},
author = {Dar, M. S. and Akram, Khush Bakhat and Sohail, Ayesha and Arif, Fatima and Zabihi, Fatemeh and Yang, Shengyuan and Munir, Shamsa and Zhu, Meifang and Abid, M. and Nauman, Muhammad},
issn = {2046-2069},
journal = {RSC Advances},
number = {35},
pages = {21702--21715},
publisher = {Royal Society of Chemistry},
title = {{Heat induction in two-dimensional graphene–Fe3O4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling}},
doi = {10.1039/d1ra03428f},
volume = {11},
year = {2021},
}
@inproceedings{9604,
abstract = {Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.},
author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {9783959771849},
issn = {18688969},
location = {Online},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Counting cells of order-k voronoi tessellations in ℝ^{3} with morse theory}},
doi = {10.4230/LIPIcs.SoCG.2021.16},
volume = {189},
year = {2021},
}
@inproceedings{9356,
abstract = {In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of attempting to conclude boolean values of trace specifications), such as maximal or average response time along a trace. Quantitative monitors are approximate: with every finite prefix, they can improve their estimate of the infinite trace's unknown property value. Consequently, quantitative monitors can be compared with regard to a precision-cost trade-off: better approximations of the property value require more monitor resources, such as states (in the case of finite-state monitors) or registers, and additional resources yield better approximations. We introduce a formal framework for quantitative and approximate monitoring, show how it conservatively generalizes the classical boolean setting for monitoring, and give several precision-cost trade-offs for monitors. For example, we prove that there are quantitative properties for which every additional register improves monitoring precision.},
author = {Henzinger, Thomas A and Sarac, Naci E},
booktitle = {Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science},
location = {Online},
publisher = {Association for Computing Machinery},
title = {{Quantitative and approximate monitoring}},
year = {2021},
}
@article{8198,
abstract = {We investigate how the critical driving amplitude at the Floquet many-body localized (MBL) to ergodic phase transition differs between smooth and nonsmooth drives. To this end, we numerically study a disordered spin-1/2 chain which is periodically driven by a sine or square-wave drive over a wide range of driving frequencies. In both cases the critical driving amplitude increases monotonically with the frequency, and at large frequencies it is identical for the two drives. However, at low and intermediate frequencies the critical amplitude of the square-wave drive depends strongly on the frequency, while that of the sinusoidal drive is almost constant over a wide frequency range. By analyzing the density of drive-induced resonances we conclude that this difference is due to resonances induced by the higher harmonics which are present (absent) in the Fourier spectrum of the square-wave (sine) drive. Furthermore, we suggest a numerically efficient method for estimating the frequency dependence of the critical driving amplitudes for different drives which is based on calculating the density of drive-induced resonances. We conclude that delocalization occurs once the density of drive-induced resonances reaches a critical value determined only by the static system.},
author = {Diringer, Asaf A. and Gulden, Tobias},
issn = {24699969},
journal = {Physical Review B},
number = {21},
publisher = {American Physical Society},
title = {{Impact of drive harmonics on the stability of Floquet many-body localization}},
doi = {10.1103/PhysRevB.103.214204},
volume = {103},
year = {2021},
}
@article{8317,
abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special “basic” holes guarantee foldability.},
author = {Aichholzer, Oswin and Akitaya, Hugo A. and Cheung, Kenneth C. and Demaine, Erik D. and Demaine, Martin L. and Fekete, Sándor P. and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
publisher = {Elsevier},
title = {{Folding polyominoes with holes into a cube}},
doi = {10.1016/j.comgeo.2020.101700},
volume = {93},
year = {2021},
}
@article{7463,
abstract = {Resting-state brain activity is characterized by the presence of neuronal avalanches showing absence of characteristic size. Such evidence has been interpreted in the context of criticality and associated with the normal functioning of the brain. A distinctive attribute of systems at criticality is the presence of long-range correlations. Thus, to verify the hypothesis that the brain operates close to a critical point and consequently assess deviations from criticality for diagnostic purposes, it is of primary importance to robustly and reliably characterize correlations in resting-state brain activity. Recent works focused on the analysis of narrow-band electroencephalography (EEG) and magnetoencephalography (MEG) signal amplitude envelope, showing evidence of long-range temporal correlations (LRTC) in neural oscillations. However, brain activity is a broadband phenomenon, and a significant piece of information useful to precisely discriminate between normal (critical) and pathological behavior (non-critical), may be encoded in the broadband spatio-temporal cortical dynamics. Here we propose to characterize the temporal correlations in the broadband brain activity through the lens of neuronal avalanches. To this end, we consider resting-state EEG and long-term MEG recordings, extract the corresponding neuronal avalanche sequences, and study their temporal correlations. We demonstrate that the broadband resting-state brain activity consistently exhibits long-range power-law correlations in both EEG and MEG recordings, with similar values of the scaling exponents. Importantly, although we observe that the avalanche size distribution depends on scale parameters, scaling exponents characterizing long-range correlations are quite robust. In particular, they are independent of the temporal binning (scale of analysis), indicating that our analysis captures intrinsic characteristics of the underlying dynamics. Because neuronal avalanches constitute a fundamental feature of neural systems with universal characteristics, the proposed approach may serve as a general, systems- and experiment-independent procedure to infer the existence of underlying long-range correlations in extended neural systems, and identify pathological behaviors in the complex spatio-temporal interplay of cortical rhythms.},
author = {Lombardi, Fabrizio and Shriki, Oren and Herrmann, Hans J and de Arcangelis, Lucilla},
issn = {18728286},
journal = {Neurocomputing},
publisher = {Elsevier},
title = {{Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches}},
doi = {10.1016/j.neucom.2020.05.126},
year = {2021},
}
@article{9626,
abstract = {SnSe, a wide-bandgap semiconductor, has attracted significant attention from the thermoelectric (TE) community due to its outstanding TE performance deriving from the ultralow thermal conductivity and advantageous electronic structures. Here, we promoted the TE performance of n-type SnSe polycrystals through bandgap engineering and vacancy compensation. We found that PbTe can significantly reduce the wide bandgap of SnSe to reduce the impurity transition energy, largely enhancing the carrier concentration. Also, PbTe-induced crystal symmetry promotion increases the carrier mobility, preserving large Seebeck coefficient. Consequently, a maximum ZT of ∼1.4 at 793 K is obtained in Br doped SnSe–13%PbTe. Furthermore, we found that extra Sn in n-type SnSe can compensate for the intrinsic Sn vacancies and form electron donor-like metallic Sn nanophases. The Sn nanophases near the grain boundary could also reduce the intergrain energy barrier which largely enhances the carrier mobility. As a result, a maximum ZT value of ∼1.7 at 793 K and an average ZT (ZTave) of ∼0.58 in 300–793 K are achieved in Br doped Sn1.08Se–13%PbTe. Our findings provide a novel strategy to promote the TE performance in wide-bandgap semiconductors.},
author = {Su, Lizhong and Hong, Tao and Wang, Dongyang and Wang, Sining and Qin, Bingchao and Zhang, Mengmeng and Gao, Xiang and Chang, Cheng and Zhao, Li Dong},
issn = {25425293},
journal = {Materials Today Physics},
publisher = {Elsevier},
title = {{Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation}},
doi = {10.1016/j.mtphys.2021.100452},
volume = {20},
year = {2021},
}
@article{9438,
abstract = {Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre–postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.},
author = {Vandael, David H and Okamoto, Yuji and Borges Merjane, Carolina and Vargas Barroso, Victor M and Suter, Benjamin and Jonas, Peter M},
issn = {17502799},
journal = {Nature Protocols},
number = {6},
pages = {2947–2967},
publisher = {Springer Nature},
title = {{Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses}},
doi = {10.1038/s41596-021-00526-0},
volume = {16},
year = {2021},
}
@inproceedings{9605,
abstract = {Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness. },
author = {Corbet, René and Kerber, Michael and Lesnick, Michael and Osang, Georg F},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {9783959771849},
issn = {18688969},
location = {Online},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Computing the multicover bifiltration}},
doi = {10.4230/LIPIcs.SoCG.2021.27},
volume = {189},
year = {2021},
}
@article{9571,
abstract = {As the size and complexity of models and datasets grow, so does the need for communication-efficient variants of stochastic gradient descent that can be deployed to perform parallel model training. One popular communication-compression method for data-parallel SGD is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce communication costs. The baseline variant of QSGD provides strong theoretical guarantees, however, for practical purposes, the authors proposed a heuristic variant which we call QSGDinf, which demonstrated impressive empirical gains for distributed training of large neural networks. In this paper, we build on this work to propose a new gradient quantization scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches and exceeds the empirical performance of the QSGDinf heuristic and of other compression methods.},
author = {Ramezani-Kebrya, Ali and Faghri, Fartash and Markov, Ilya and Aksenov, Vitalii and Alistarh, Dan-Adrian and Roy, Daniel M.},
issn = {15337928},
journal = {Journal of Machine Learning Research},
number = {114},
pages = {1−43},
publisher = {Journal of Machine Learning Research},
title = {{NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization}},
volume = {22},
year = {2021},
}
@article{9629,
abstract = {Intestinal organoids derived from single cells undergo complex crypt–villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.},
author = {Yang, Qiutan and Xue, Shi-lei and Chan, Chii Jou and Rempfler, Markus and Vischi, Dario and Maurer-Gutierrez, Francisca and Hiiragi, Takashi and Hannezo, Edouard B and Liberali, Prisca},
issn = {14764679},
journal = {Nature Cell Biology},
publisher = {Springer Nature},
title = {{Cell fate coordinates mechano-osmotic forces in intestinal crypt formation}},
doi = {10.1038/s41556-021-00700-2},
year = {2021},
}
@article{9669,
abstract = {The set of known stable phases of water may not be complete, and some of the phase boundaries between them are fuzzy. Starting from liquid water and a comprehensive set of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory levels of approximation, accounting for thermal and nuclear fluctuations as well as proton disorder. Such calculations are only made tractable because we combine machine-learning methods and advanced free-energy techniques. The computed phase diagram is in qualitative agreement with experiment, particularly at pressures ≲ 8000 bar, and the discrepancy in chemical potential is comparable with the subtle uncertainties introduced by proton disorder and the spread between the three hybrid functionals. None of the hypothetical ice phases considered is thermodynamically stable in our calculations, suggesting the completeness of the experimental water phase diagram in the region considered. Our work demonstrates the feasibility of predicting the phase diagram of a polymorphic system from first principles and provides a thermodynamic way of testing the limits of quantum-mechanical calculations.},
author = {Reinhardt, Aleks and Cheng, Bingqing},
issn = {2041-1723},
journal = {Nature Communications},
number = {1},
publisher = {Springer Nature},
title = {{Quantum-mechanical exploration of the phase diagram of water}},
doi = {10.1038/s41467-020-20821-w},
volume = {12},
year = {2021},
}
@article{9641,
abstract = {At the encounter with a novel environment, contextual memory formation is greatly enhanced, accompanied with increased arousal and active exploration. Although this phenomenon has been widely observed in animal and human daily life, how the novelty in the environment is detected and contributes to contextual memory formation has lately started to be unveiled. The hippocampus has been studied for many decades for its largely known roles in encoding spatial memory, and a growing body of evidence indicates a differential involvement of dorsal and ventral hippocampal divisions in novelty detection. In this brief review article, we discuss the recent findings of the role of mossy cells in the ventral hippocampal moiety in novelty detection and put them in perspective with other novelty-related pathways in the hippocampus. We propose a mechanism for novelty-driven memory acquisition in the dentate gyrus by the direct projection of ventral mossy cells to dorsal dentate granule cells. By this projection, the ventral hippocampus sends novelty signals to the dorsal hippocampus, opening a gate for memory encoding in dentate granule cells based on information coming from the entorhinal cortex. We conclude that, contrary to the presently accepted functional independence, the dorsal and ventral hippocampi cooperate to link the novelty and contextual information, and this dorso-ventral interaction is crucial for the novelty-dependent memory formation.},
author = {Fredes, Felipe and Shigemoto, Ryuichi},
issn = {10959564},
journal = {Neurobiology of Learning and Memory},
publisher = {Elsevier},
title = {{The role of hippocampal mossy cells in novelty detection}},
doi = {10.1016/j.nlm.2021.107486},
volume = {183},
year = {2021},
}
@article{9679,
abstract = {The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment.},
author = {Huber, David and Marchukov, Oleksandr V. and Hammer, Hans Werner and Volosniev, Artem},
issn = {13672630},
journal = {New Journal of Physics},
number = {6},
publisher = {IOP Publishing},
title = {{Morphology of three-body quantum states from machine learning}},
doi = {10.1088/1367-2630/ac0576},
volume = {23},
year = {2021},
}
@article{9657,
abstract = {To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.},
author = {Gao, Z and Chen, Z and Cui, Y and Ke, M and Xu, H and Xu, Q and Chen, J and Li, Y and Huang, L and Zhao, H and Huang, D and Mai, S and Xu, T and Liu, X and Li, S and Guan, Y and Yang, W and Friml, Jiří and Petrášek, J and Zhang, J and Chen, X},
issn = {1532-298x},
journal = {Plant Cell},
publisher = {American Society of Plant Biologists},
title = {{GmPIN-dependent polar auxin transport is involved in soybean nodule development}},
doi = {10.1093/plcell/koab183},
year = {2021},
}
@article{9656,
abstract = {Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.},
author = {Han, Huibin and Adamowski, Maciek and Qi, Linlin and Alotaibi, SS and Friml, Jiří},
issn = {1469-8137},
journal = {New Phytologist},
publisher = {Wiley},
title = {{PIN-mediated polar auxin transport regulations in plant tropic responses}},
doi = {10.1111/nph.17617},
year = {2021},
}
@unpublished{9695,
abstract = {Real-world data typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of measure. When assessing the similarity between data points, one can build various distance measures using subsets of these features. Using the fewest features but still retaining sufficient information about the system is crucial in many statistical learning approaches, particularly when data are sparse. We introduce a statistical test that can assess the relative information retained when using two different distance measures, and determine if they are equivalent, independent, or if one is more informative than the other. This in turn allows finding the most informative distance measure out of a pool of candidates. The approach is applied to find the most relevant policy variables for controlling the Covid-19 epidemic and to find compact yet informative representations of atomic structures, but its potential applications are wide ranging in many branches of science.},
author = {Glielmo, Aldo and Zeni, Claudio and Cheng, Bingqing and Csanyi, Gabor and Laio, Alessandro},
booktitle = {arXiv},
title = {{Ranking the information content of distance measures}},
year = {2021},
}
@article{9627,
abstract = {We compute the deficiency spaces of operators of the form 𝐻𝐴⊗̂ 𝐼+𝐼⊗̂ 𝐻𝐵, for symmetric 𝐻𝐴 and self-adjoint 𝐻𝐵. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumann's theory. The structure of the deficiency spaces for this case was asserted already in Ibort et al. [Boundary dynamics driven entanglement, J. Phys. A: Math. Theor. 47(38) (2014) 385301], but only proven under the restriction of 𝐻𝐵 having discrete, non-degenerate spectrum.},
author = {Lenz, Daniel and Weinmann, Timon and Wirth, Melchior},
issn = {14643839},
journal = {Proceedings of the Edinburgh Mathematical Society},
pages = {1--15},
publisher = {Cambridge University Press},
title = {{Self-adjoint extensions of bipartite Hamiltonians}},
doi = {10.1017/S0013091521000080},
year = {2021},
}
@unpublished{9696,
abstract = {Most water in the universe may be superionic, and its thermodynamic and transport properties are crucial for planetary science but difficult to probe experimentally or theoretically. We use machine learning and free energy methods to overcome the limitations of quantum mechanical simulations, and characterize hydrogen diffusion, superionic transitions, and phase behaviors of water at extreme conditions. We predict that a close-packed superionic phase with mixed stacking is stable over a wide temperature and pressure range, while a body-centered cubic phase is only thermodynamically stable in a small window but is kinetically favored. Our phase boundaries, which are consistent with the existing-albeit scarce-experimental observations, help resolve the fractions of insulating ice, different superionic phases, and liquid water inside of ice giants.},
author = {Cheng, Bingqing and Bethkenhagen, Mandy and Pickard, Chris J. and Hamel, Sebastien},
booktitle = {arXiv},
title = {{Predicting the phase behaviors of superionic water at planetary conditions}},
year = {2021},
}
@article{9647,
abstract = {Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.},
author = {Petrov, Tatjana and Igler, Claudia and Sezgin, Ali and Henzinger, Thomas A and Guet, Calin C},
issn = {03043975},
journal = {Theoretical Computer Science},
publisher = {Elsevier},
title = {{Long lived transients in gene regulation}},
doi = {10.1016/j.tcs.2021.05.023},
year = {2021},
}
@inproceedings{9646,
abstract = {We consider the fundamental problem of deriving quantitative bounds on the probability that a given assertion is violated in a probabilistic program. We provide automated algorithms that obtain both lower and upper bounds on the assertion violation probability. The main novelty of our approach is that we prove new and dedicated fixed-point theorems which serve as the theoretical basis of our algorithms and enable us to reason about assertion violation bounds in terms of pre and post fixed-point functions. To synthesize such fixed-points, we devise algorithms that utilize a wide range of mathematical tools, including repulsing ranking supermartingales, Hoeffding's lemma, Minkowski decompositions, Jensen's inequality, and convex optimization. On the theoretical side, we provide (i) the first automated algorithm for lower-bounds on assertion violation probabilities, (ii) the first complete algorithm for upper-bounds of exponential form in affine programs, and (iii) provably and significantly tighter upper-bounds than the previous approaches. On the practical side, we show our algorithms can handle a wide variety of programs from the literature and synthesize bounds that are remarkably tighter than previous results, in some cases by thousands of orders of magnitude.},
author = {Wang, Jinyi and Sun, Yican and Fu, Hongfei and Chatterjee, Krishnendu and Goharshady, Amir Kafshdar},
booktitle = {Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation},
isbn = {9781450383912},
location = {Online},
pages = {1171--1186},
publisher = {Association for Computing Machinery},
title = {{Quantitative analysis of assertion violations in probabilistic programs}},
doi = {10.1145/3453483.3454102},
year = {2021},
}
@inproceedings{9645,
abstract = {We consider the fundamental problem of reachability analysis over imperative programs with real variables. Previous works that tackle reachability are either unable to handle programs consisting of general loops (e.g. symbolic execution), or lack completeness guarantees (e.g. abstract interpretation), or are not automated (e.g. incorrectness logic). In contrast, we propose a novel approach for reachability analysis that can handle general and complex loops, is complete, and can be entirely automated for a wide family of programs. Through the notion of Inductive Reachability Witnesses (IRWs), our approach extends ideas from both invariant generation and termination to reachability analysis.
We first show that our IRW-based approach is sound and complete for reachability analysis of imperative programs. Then, we focus on linear and polynomial programs and develop automated methods for synthesizing linear and polynomial IRWs. In the linear case, we follow the well-known approaches using Farkas' Lemma. Our main contribution is in the polynomial case, where we present a push-button semi-complete algorithm. We achieve this using a novel combination of classical theorems in real algebraic geometry, such as Putinar's Positivstellensatz and Hilbert's Strong Nullstellensatz. Finally, our experimental results show we can prove complex reachability objectives over various benchmarks that were beyond the reach of previous methods.},
author = {Asadi, Ali and Chatterjee, Krishnendu and Fu, Hongfei and Goharshady, Amir Kafshdar and Mahdavi, Mohammad},
booktitle = {Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation},
isbn = {9781450383912},
location = {Online},
pages = {772--787},
publisher = {Association for Computing Machinery},
title = {{Polynomial reachability witnesses via Stellensätze}},
doi = {10.1145/3453483.3454076},
year = {2021},
}
@inproceedings{9644,
abstract = {We present a new approach to proving non-termination of non-deterministic integer programs. Our technique is rather simple but efficient. It relies on a purely syntactic reversal of the program's transition system followed by a constraint-based invariant synthesis with constraints coming from both the original and the reversed transition system. The latter task is performed by a simple call to an off-the-shelf SMT-solver, which allows us to leverage the latest advances in SMT-solving. Moreover, our method offers a combination of features not present (as a whole) in previous approaches: it handles programs with non-determinism, provides relative completeness guarantees and supports programs with polynomial arithmetic. The experiments performed with our prototype tool RevTerm show that our approach, despite its simplicity and stronger theoretical guarantees, is at least on par with the state-of-the-art tools, often achieving a non-trivial improvement under a proper configuration of its parameters.},
author = {Chatterjee, Krishnendu and Goharshady, Ehsan Kafshdar and Novotný, Petr and Zikelic, Dorde},
booktitle = {Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation},
isbn = {9781450383912},
location = {Online},
pages = {1033--1048},
publisher = {Association for Computing Machinery},
title = {{Proving non-termination by program reversal}},
doi = {10.1145/3453483.3454093},
year = {2021},
}
@article{9649,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f : Rd → Rd−n. A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation T of the ambient space Rd. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently
fine triangulation T . This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.},
author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs},
journal = {Foundations of Computational Mathematics },
publisher = {Springer Nature},
title = {{The topological correctness of PL approximations of isomanifolds}},
doi = {10.1007/s10208-021-09520-0},
year = {2021},
}
@unpublished{9698,
abstract = {Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We then follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.},
author = {Keith, John A. and Valentin Vassilev-Galindo, Valentin and Cheng, Bingqing and Chmiela, Stefan and Gastegger, Michael and Müller, Klaus-Robert and Tkatchenko, Alexandre},
booktitle = {arXiv},
title = {{Combining machine learning and computational chemistry for predictive insights into chemical systems}},
year = {2021},
}
@inproceedings{9678,
abstract = {We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more generally for locally optimal semi-matchings. The prior work by Czygrinow et al. (DISC 2012) finds a stable orientation in O(Δ^5) rounds in graphs of maximum degree Δ, while we improve it to O(Δ^4) and also prove a lower bound of Ω(Δ). For the more general problem of locally optimal semi-matchings, the prior upper bound is O(S^5) and our new algorithm runs in O(C · S^4) rounds, which is an improvement for C = o(S); here C and S are the maximum degrees of customers and servers, respectively.},
author = {Brandt, Sebastian and Keller, Barbara and Rybicki, Joel and Suomela, Jukka and Uitto, Jara},
booktitle = {Annual ACM Symposium on Parallelism in Algorithms and Architectures},
isbn = {9781450380706},
location = { Virtual Event, United States},
pages = {129--139},
title = {{Efficient load-balancing through distributed token dropping}},
doi = {10.1145/3409964.3461785},
year = {2021},
}
@inproceedings{9441,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. },
author = {Boissonnat, Jean-Daniel and Kachanovich, Siargey and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
isbn = {978-3-95977-184-9},
issn = {1868-8969},
location = {Virtual},
pages = {17:1--17:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations}},
doi = {10.4230/LIPIcs.SoCG.2021.17},
volume = {189},
year = {2021},
}
@inproceedings{9620,
abstract = {In this note, we introduce a distributed twist on the classic coupon collector problem: a set of m collectors wish to each obtain a set of n coupons; for this, they can each sample coupons uniformly at random, but can also meet in pairwise interactions, during which they can exchange coupons. By doing so, they hope to reduce the number of coupons that must be sampled by each collector in order to obtain a full set. This extension is natural when considering real-world manifestations of the coupon collector phenomenon, and has been remarked upon and studied empirically (Hayes and Hannigan 2006, Ahmad et al. 2014, Delmarcelle 2019).
We provide the first theoretical analysis for such a scenario. We find that “coupon collecting with friends” can indeed significantly reduce the number of coupons each collector must sample, and raises interesting connections to the more traditional variants of the problem. While our analysis is in most cases asymptotically tight, there are several open questions raised, regarding finer-grained analysis of both “coupon collecting with friends,” and of a long-studied variant of the original problem in which a collector requires multiple full sets of coupons.},
author = {Alistarh, Dan-Adrian and Davies, Peter},
booktitle = {Structural Information and Communication Complexity},
isbn = {9783030795269},
issn = {1611-3349},
location = {Wrocław, Poland},
pages = {3--12},
publisher = {Springer Nature},
title = {{Collecting coupons is faster with friends}},
doi = {10.1007/978-3-030-79527-6_1},
volume = {12810},
year = {2021},
}
@inproceedings{9200,
abstract = {Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach.},
author = {Garcia Soto, Miriam and Henzinger, Thomas A and Schilling, Christian},
booktitle = {HSCC '21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control},
isbn = {9781450383394},
keywords = {hybrid automaton, membership, system identification},
location = {Nashville, TN, United States},
pages = {2102.12734},
publisher = {Association for Computing Machinery},
title = {{Synthesis of hybrid automata with affine dynamics from time-series data}},
doi = {10.1145/3447928.3456704},
year = {2021},
}
@inproceedings{9345,
abstract = {Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.},
author = {Edelsbrunner, Herbert and Heiss, Teresa and Kurlin , Vitaliy and Smith, Philip and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
issn = {1868-8969},
location = {Virtual},
pages = {32:1--32:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The density fingerprint of a periodic point set}},
doi = {10.4230/LIPIcs.SoCG.2021.32},
volume = {189},
year = {2021},
}
@inproceedings{9296,
abstract = { matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.},
author = {Aichholzer, Oswin and Arroyo Guevara, Alan M and Masárová, Zuzana and Parada, Irene and Perz, Daniel and Pilz, Alexander and Tkadlec, Josef and Vogtenhuber, Birgit},
booktitle = {15th International Conference on Algorithms and Computation},
isbn = {9783030682101},
issn = {16113349},
location = {Yangon, Myanmar},
pages = {221--233},
publisher = {Springer Nature},
title = {{On compatible matchings}},
doi = {10.1007/978-3-030-68211-8_18},
volume = {12635},
year = {2021},
}
@inproceedings{9466,
abstract = {In this work, we apply the dynamical systems analysis of Hanrot et al. (CRYPTO’11) to a class of lattice block reduction algorithms that includes (natural variants of) slide reduction and block-Rankin reduction. This implies sharper bounds on the polynomial running times (in the query model) for these algorithms and opens the door to faster practical variants of slide reduction. We give heuristic arguments showing that such variants can indeed speed up slide reduction significantly in practice. This is confirmed by experimental evidence, which also shows that our variants are competitive with state-of-the-art reduction algorithms.},
author = {Walter, Michael},
booktitle = {Public-Key Cryptography – PKC 2021},
isbn = {9783030752446},
issn = {16113349},
location = {Virtual},
pages = {45--67},
publisher = {Springer Nature},
title = {{The convergence of slide-type reductions}},
doi = {10.1007/978-3-030-75245-3_3},
volume = {12710},
year = {2021},
}
@inproceedings{9210,
abstract = {Modern neural networks can easily fit their training set perfectly. Surprisingly, despite being “overfit” in this way, they tend to generalize well to future data, thereby defying the classic bias–variance trade-off of machine learning theory. Of the many possible explanations, a prevalent one is that training by stochastic gradient descent (SGD) imposes an implicit bias that leads it to learn simple functions, and these simple functions generalize well. However, the specifics of this implicit bias are not well understood.
In this work, we explore the smoothness conjecture which states that SGD is implicitly biased towards learning functions that are smooth. We propose several measures to formalize the intuitive notion of smoothness, and we conduct experiments to determine whether SGD indeed implicitly optimizes for these measures. Our findings rule out the possibility that smoothness measures based on first-order derivatives are being implicitly enforced. They are supportive, though, of the smoothness conjecture for measures based on second-order derivatives.},
author = {Volhejn, Vaclav and Lampert, Christoph},
booktitle = {42nd German Conference on Pattern Recognition },
isbn = {9783030712778},
issn = {16113349},
location = {Tübingen, Germany},
pages = {246--259},
publisher = {Springer},
title = {{Does SGD implicitly optimize for smoothness?}},
doi = {10.1007/978-3-030-71278-5_18},
volume = {12544 LNCS},
year = {2021},
}