@inproceedings{2915, author = {Kroemer, Oliver and Lampert, Christoph and Peters, Jan}, publisher = {Deutsches Zentrum für Luft und Raumfahrt}, title = {{Multi-modal learning for dynamic tactile sensing}}, year = {2012}, } @article{2912, author = {Edelsbrunner, Herbert and Strelkova, Nataliya}, journal = {Russian Mathematical Surveys}, number = {6}, pages = {1167–1168}, publisher = {Russian Academy of Sciences}, title = {{On the configuration space for the shortest networks}}, doi = {10.4213/rm9503}, volume = {67}, year = {2012}, } @inproceedings{3127, abstract = {When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data, we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations.}, author = {Quadrianto, Novi and Lampert, Christoph and Chen, Chao}, booktitle = {Proceedings of the 29th International Conference on Machine Learning}, location = {Edinburgh, United Kingdom}, pages = {211--218}, publisher = {ML Research Press}, title = {{The most persistent soft-clique in a set of sampled graphs}}, year = {2012}, } @article{2904, abstract = {Generalized van der Corput sequences are onedimensional, infinite sequences in the unit interval. They are generated from permutations in integer base b and are the building blocks of the multi-dimensional Halton sequences. Motivated by recent progress of Atanassov on the uniform distribution behavior of Halton sequences, we study, among others, permutations of the form P(i) = ai (mod b) for coprime integers a and b. We show that multipliers a that either divide b - 1 or b + 1 generate van der Corput sequences with weak distribution properties. We give explicit lower bounds for the asymptotic distribution behavior of these sequences and relate them to sequences generated from the identity permutation in smaller bases, which are, due to Faure, the weakest distributed generalized van der Corput sequences.}, author = {Pausinger, Florian}, issn = {2118-8572}, journal = {Journal de Theorie des Nombres des Bordeaux}, number = {3}, pages = {729 -- 749}, publisher = {Université de Bordeaux}, title = {{Weak multipliers for generalized van der Corput sequences}}, doi = {10.5802/jtnb.819}, volume = {24}, year = {2012}, } @article{2902, abstract = {We present an algorithm for simplifying linear cartographic objects and results obtained with a computer program implementing this algorithm. }, author = {Edelsbrunner, Herbert and Musin, Oleg and Ukhalov, Alexey and Yakimova, Olga and Alexeev, Vladislav and Bogaevskaya, Victoriya and Gorohov, Andrey and Preobrazhenskaya, Margarita}, journal = {Modeling and Analysis of Information Systems}, number = {6}, pages = {152 -- 160}, publisher = {Russian Academy of Sciences}, title = {{Fractal and computational geometry for generalizing cartographic objects}}, volume = {19}, year = {2012}, }