@article{2469, abstract = {Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact.}, author = {Maître, Jean-Léon and Heisenberg, Carl-Philipp J}, journal = {Current Biology}, number = {14}, pages = {R626 -- R633}, publisher = {Cell Press}, title = {{Three functions of cadherins in cell adhesion}}, doi = {10.1016/j.cub.2013.06.019}, volume = {23}, year = {2013}, } @article{247, abstract = {An improved estimate is provided for the number of Fq-rational points on a geometrically irreducible, projective, cubic hypersurface that is not equal to a cone.}, author = {Timothy Browning}, journal = {Canadian Mathematical Bulletin}, number = {3}, pages = {500 -- 502}, publisher = {Unknown}, title = {{The Lang-Weil estimate for cubic hypersurfaces}}, doi = {10.4153/CMB-2011-177-4}, volume = {56}, year = {2013}, } @article{2473, abstract = {When a mutation with selective advantage s spreads through a panmictic population, it may cause two lineages at a linked locus to coalesce; the probability of coalescence is exp(−2rT), where T∼log(2Ns)/s is the time to fixation, N is the number of haploid individuals, and r is the recombination rate. Population structure delays fixation, and so weakens the effect of a selective sweep. However, favourable alleles spread through a spatially continuous population behind a narrow wavefront; ancestral lineages are confined at the tip of this front, and so coalesce rapidly. In extremely dense populations, coalescence is dominated by rare fluctuations ahead of the front. However, we show that for moderate densities, a simple quasi-deterministic approximation applies: the rate of coalescence within the front is λ∼2g(η)/(ρℓ), where ρ is the population density and is the characteristic scale of the wavefront; g(η) depends only on the strength of random drift, . The net effect of a sweep on coalescence also depends crucially on whether two lineages are ever both within the wavefront at the same time: even in the extreme case when coalescence within the front is instantaneous, the net rate of coalescence may be lower than in a single panmictic population. Sweeps can also have a substantial impact on the rate of gene flow. A single lineage will jump to a new location when it is hit by a sweep, with mean square displacement ; this can be substantial if the species’ range, L, is large, even if the species-wide rate of sweeps per map length, Λ/R, is small. This effect is half as strong in two dimensions. In contrast, the rate of coalescence between lineages, at random locations in space and on the genetic map, is proportional to (c/L)(Λ/R), where c is the wavespeed: thus, on average, one-dimensional structure is likely to reduce coalescence due to sweeps, relative to panmixis. In two dimensions, genes must move along the front before they can coalesce; this process is rapid, being dominated by rare fluctuations. This leads to a dramatically higher rate of coalescence within the wavefront than if lineages simply diffused along the front. Nevertheless, the net rate of coalescence due to a sweep through a two-dimensional population is likely to be lower than it would be with panmixis.}, author = {Barton, Nicholas H and Etheridge, Alison and Kelleher, Jerome and Véber, Amandine}, journal = {Theoretical Population Biology}, number = {8}, pages = {75 -- 89}, publisher = {Elsevier}, title = {{Genetic hitch-hiking in spatially extended populations}}, doi = {10.1016/j.tpb.2012.12.001}, volume = {87}, year = {2013}, } @article{2478, abstract = {Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites. This function relies on extracellular, NL1 isoform-specific sequences that facilitate biochemical interactions between NL1 and the NMDAR GluN1 subunit. Our work uncovers NL1 isoform-specific cisinteractions with ionotropic glutamate receptors as a key mechanism for controlling synaptic properties.}, author = {Budreck, Elaine C and Kwon, Oh-Bin and Jung, Jung-Hoon and Baudouin, Stéphane J and Thommen, Albert and Kim, Hye-Sun and Fukazawa, Yugo and Harumi Harada and Tabuchi, Katsuhiko and Ryuichi Shigemoto and Scheiffele, Peter and Kim, Joung-Hun}, journal = {PNAS}, number = {2}, pages = {725 -- 730}, publisher = {National Academy of Sciences}, title = {{Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling}}, doi = {10.1073/pnas.1214718110}, volume = {110}, year = {2013}, } @article{250, abstract = {Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.}, author = {de la Bretèche, Régis and Timothy Browning}, journal = {Proceedings of the London Mathematical Society}, number = {4}, pages = {1030 -- 1078}, publisher = {Oxford University Press}, title = {{Density of Châtelet surfaces failing the Hasse principle}}, doi = {10.1112/plms/pdt060}, volume = {108}, year = {2013}, }