@article{2204, abstract = {We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.}, author = {Bhongale, Satyan and Mathey, Ludwig and Zhao, Erhai and Yelin, Susanne and Lemeshko, Mikhail}, journal = {Physical Review Letters}, number = {15}, publisher = {American Physical Society}, title = {{Quantum phases of quadrupolar fermi gases in optical lattices}}, doi = {10.1103/PhysRevLett.110.155301}, volume = {110}, year = {2013}, } @article{2206, abstract = {Magnetic impurities embedded in inert solids can exhibit long coherence times and interact with one another via their intrinsic anisotropic dipolar interaction. We argue that, as a consequence of these properties, disordered ensembles of magnetic impurities provide an effective platform for realizing a controllable, tunable version of the dipolar quantum spin glass seen in LiHoxY1-xF4. Specifically, we propose and analyze a system composed of dysprosium atoms embedded in solid helium. We describe the phase diagram of the system and discuss the realizability and detectability of the quantum spin glass and antiglass phases.}, author = {Mikhail Lemeshko and Yao, Norman Y and Gorshkov, Alexey V and Weimer, Hendrik and Bennett, Steven D and Momose, Takamasa and Gopalakrishnan, Sarang}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {1}, publisher = {American Physical Society}, title = {{Controllable quantum spin glasses with magnetic impurities embedded in quantum solids}}, doi = {10.1103/PhysRevB.88.014426}, volume = {88}, year = {2013}, } @misc{2205, abstract = {The goal of the present article is to review the major developments that have led to the current understanding of molecule-field interactions and experimental methods for manipulating molecules with electromagnetic fields. Molecule-field interactions are at the core of several, seemingly distinct areas of molecular physics. This is reflected in the organisation of this article, which includes sections on field control of molecular beams, external field traps for cold molecules, control of molecular orientation and molecular alignment, manipulation of molecules by non-conservative forces, ultracold molecules and ultracold chemistry, controlled many-body phenomena, entanglement of molecules and dipole arrays, and stability of molecular systems in high-frequency super-intense laser fields. The article contains 852 references.}, author = {Mikhail Lemeshko and Krems, Roman V and Doyle, John M and Kais, Sabre}, booktitle = {Molecular Physics}, number = {12-13}, pages = {1648 -- 1682}, publisher = {Taylor & Francis}, title = {{Manipulation of molecules with electromagnetic fields}}, doi = {10.1080/00268976.2013.813595}, volume = {111}, year = {2013}, } @article{2207, abstract = {The formation of molecules and supramolecular structures results from bonding by conservative forces acting among electrons and nuclei and giving rise to equilibrium configurations defined by minima of the interaction potential. Here we show that bonding can also occur by the non-conservative forces responsible for interaction-induced coherent population trapping. The bound state arises in a dissipative process and manifests itself as a stationary state at a preordained interatomic distance. Remarkably, such a dissipative bonding is present even when the interactions among the atoms are purely repulsive. The dissipative bound states can be created and studied spectroscopically in present-day experiments with ultracold atoms or molecules and can potentially serve for cooling strongly interacting quantum gases.}, author = {Mikhail Lemeshko and Weimer, Hendrik}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Dissipative binding of atoms by non-conservative forces}}, doi = {10.1038/ncomms3230}, volume = {4}, year = {2013}, } @inproceedings{2210, abstract = {A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon. In this paper, we ask the reverse question: Given the straight skeleton (in form of a tree with a drawing in the plane, but with the exact position of the leaves unspecified), can we reconstruct the polygon? We show that in most cases there exists at most one polygon; in the remaining case there is an infinite number of polygons determined by one angle that can range in an interval. We can find this (set of) polygon(s) in linear time in the Real RAM computer model.}, author = {Biedl, Therese and Held, Martin and Huber, Stefan}, booktitle = {29th European Workshop on Computational Geometry}, location = {Braunschweig, Germany}, pages = {95 -- 98}, publisher = {TU Braunschweig}, title = {{Reconstructing polygons from embedded straight skeletons}}, year = {2013}, }