@article{1537, abstract = {3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.}, author = {Ruprecht, Verena and Wieser, Stefan and Callan Jones, Andrew and Smutny, Michael and Morita, Hitoshi and Sako, Keisuke and Barone, Vanessa and Ritsch Marte, Monika and Sixt, Michael K and Voituriez, Raphaël and Heisenberg, Carl-Philipp J}, journal = {Cell}, number = {4}, pages = {673 -- 685}, publisher = {Cell Press}, title = {{Cortical contractility triggers a stochastic switch to fast amoeboid cell motility}}, doi = {10.1016/j.cell.2015.01.008}, volume = {160}, year = {2015}, } @article{1591, abstract = {Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well.}, author = {Adamowski, Maciek and Friml, Jirí}, journal = {Plant Cell}, number = {1}, pages = {20 -- 32}, publisher = {American Society of Plant Biologists}, title = {{PIN-dependent auxin transport: Action, regulation, and evolution}}, doi = {10.1105/tpc.114.134874}, volume = {27}, year = {2015}, } @article{1677, abstract = {We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hN-y,N-x. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. Italso occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale.}, author = {Alt, Johannes}, journal = {Journal of Mathematical Physics}, number = {10}, publisher = {American Institute of Physics}, title = {{The local semicircle law for random matrices with a fourfold symmetry}}, doi = {10.1063/1.4932606}, volume = {56}, year = {2015}, } @article{1678, abstract = {High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.}, author = {Inglés Prieto, Álvaro and Gschaider-Reichhart, Eva and Muellner, Markus and Nowak, Matthias and Nijman, Sebastian and Grusch, Michael and Janovjak, Harald L}, journal = {Nature Chemical Biology}, number = {12}, pages = {952 -- 954}, publisher = {Nature Publishing Group}, title = {{Light-assisted small-molecule screening against protein kinases}}, doi = {10.1038/nchembio.1933}, volume = {11}, year = {2015}, } @article{1576, abstract = {Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state.}, author = {Cepeda Humerez, Sarah A and Rieckh, Georg and Tkacik, Gasper}, journal = {Physical Review Letters}, number = {24}, publisher = {American Physical Society}, title = {{Stochastic proofreading mechanism alleviates crosstalk in transcriptional regulation}}, doi = {10.1103/PhysRevLett.115.248101}, volume = {115}, year = {2015}, }