@article{6109, abstract = {Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.}, author = {Laurent, Patrick and Ch’ng, QueeLim and Jospin, Maëlle and Chen, Changchun and Lorenzo, Ramiro and de Bono, Mario}, issn = {0027-8424}, journal = {Proceedings of the National Academy of Sciences}, number = {29}, pages = {E6890--E6899}, publisher = {National Academy of Sciences}, title = {{Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron}}, doi = {10.1073/pnas.1714610115}, volume = {115}, year = {2018}, } @inproceedings{6164, abstract = {In this paper, we propose an algorithm to build discrete spherical shell having integer center and real-valued inner and outer radii on the face-centered cubic (FCC) grid. We address the problem by mapping it to a 2D scenario and building the shell layer by layer on hexagonal grids with additive manufacturing in mind. The layered hexagonal grids get shifted according to need as we move from one layer to another and forms the FCC grid in 3D. However, we restrict our computation strictly to 2D in order to utilize symmetry and simplicity.}, author = {Koshti, Girish and Biswas, Ranita and Largeteau-Skapin, Gaëlle and Zrour, Rita and Andres, Eric and Bhowmick, Partha}, booktitle = {19th International Workshop}, isbn = {978-3-030-05287-4}, issn = {1611-3349}, location = {Porto, Portugal}, pages = {82--96}, publisher = {Springer}, title = {{Sphere construction on the FCC grid interpreted as layered hexagonal grids in 3D}}, doi = {10.1007/978-3-030-05288-1_7}, volume = {11255}, year = {2018}, } @article{6354, abstract = {Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow.}, author = {Fan, Shuxia and Lorenz, Michael and Massberg, Steffen and Gärtner, Florian R}, issn = {2331-8325}, journal = {Bio-Protocol}, keywords = {Platelets, Cell migration, Bacteria, Shear flow, Fibrinogen, E. coli}, number = {18}, publisher = {Bio-Protocol}, title = {{Platelet migration and bacterial trapping assay under flow}}, doi = {10.21769/bioprotoc.3018}, volume = {8}, year = {2018}, } @article{6368, abstract = {An optical network of superconducting quantum bits (qubits) is an appealing platform for quantum communication and distributed quantum computing, but developing a quantum-compatible link between the microwave and optical domains remains an outstanding challenge. Operating at T < 100 mK temperatures, as required for quantum electrical circuits, we demonstrate a mechanically mediated microwave–optical converter with 47% conversion efficiency, and use a classical feed-forward protocol to reduce added noise to 38 photons. The feed-forward protocol harnesses our discovery that noise emitted from the two converter output ports is strongly correlated because both outputs record thermal motion of the same mechanical mode. We also discuss a quantum feed-forward protocol that, given high system efficiencies, would allow quantum information to be transferred even when thermal phonons enter the mechanical element faster than the electro-optic conversion rate.}, author = {Higginbotham, Andrew P and Burns, P. S. and Urmey, M. D. and Peterson, R. W. and Kampel, N. S. and Brubaker, B. M. and Smith, G. and Lehnert, K. W. and Regal, C. A.}, issn = {1745-2473}, journal = {Nature Physics}, number = {10}, pages = {1038--1042}, publisher = {Springer Nature}, title = {{Harnessing electro-optic correlations in an efficient mechanical converter}}, doi = {10.1038/s41567-018-0210-0}, volume = {14}, year = {2018}, } @article{6369, abstract = {We construct a metamaterial from radio-frequency harmonic oscillators, and find two topologically distinct phases resulting from dissipation engineered into the system. These phases are distinguished by a quantized value of bulk energy transport. The impulse response of our circuit is measured and used to reconstruct the band structure and winding number of circuit eigenfunctions around a dark mode. Our results demonstrate that dissipative topological transport can occur in a wider class of physical systems than considered before.}, author = {Rosenthal, Eric I. and Ehrlich, Nicole K. and Rudner, Mark S. and Higginbotham, Andrew P and Lehnert, K. W.}, issn = {2469-9950}, journal = {Physical Review B}, number = {22}, publisher = {American Physical Society (APS)}, title = {{Topological phase transition measured in a dissipative metamaterial}}, doi = {10.1103/physrevb.97.220301}, volume = {97}, year = {2018}, }