@article{6504, abstract = {Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response is still unclear. Here, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity. Moreover, using the cvxIAA‐ccvTIR1 system, we also showed that TIR1‐mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin‐mediated starch granule accumulation and disruption of gravitropism within the root apex. Our results indicate that auxin‐mediated statolith production relies on the TIR1/AFB‐AXR3‐mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response.}, author = {Zhang, Yuzhou and He, P and Ma, X and Yang, Z and Pang, C and Yu, J and Wang, G and Friml, Jiří and Xiao, G}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {761--774}, publisher = {Wiley}, title = {{Auxin-mediated statolith production for root gravitropism}}, doi = {10.1111/nph.15932}, volume = {224}, year = {2019}, } @article{6506, abstract = {How does environmental complexity affect the evolution of single genes? Here, we measured the effects of a set of Bacillus subtilis glutamate dehydrogenase mutants across 19 different environments—from phenotypically homogeneous single-cell populations in liquid media to heterogeneous biofilms, plant roots and soil populations. The effects of individual gene mutations on organismal fitness were highly reproducible in liquid cultures. However, 84% of the tested alleles showed opposing fitness effects under different growth conditions (sign environmental pleiotropy). In colony biofilms and soil samples, different alleles dominated in parallel replica experiments. Accordingly, we found that in these heterogeneous cell populations the fate of mutations was dictated by a combination of selection and drift. The latter relates to programmed prophage excisions that occurred during biofilm development. Overall, for each condition, a wide range of glutamate dehydrogenase mutations persisted and sometimes fixated as a result of the combined action of selection, pleiotropy and chance. However, over longer periods and in multiple environments, nearly all of this diversity would be lost—across all the environments and conditions that we tested, the wild type was the fittest allele.}, author = {Noda-García, Lianet and Davidi, Dan and Korenblum, Elisa and Elazar, Assaf and Putintseva, Ekaterina and Aharoni, Asaph and Tawfik, Dan S.}, issn = {2058-5276}, journal = {Nature Microbiology}, number = {7}, pages = {1221–1230}, publisher = {Springer Nature}, title = {{Chance and pleiotropy dominate genetic diversity in complex bacterial environments}}, doi = {10.1038/s41564-019-0412-y}, volume = {4}, year = {2019}, } @article{6521, abstract = {Microglia have emerged as a critical component of neurodegenerative diseases. Genetic manipulation of microglia can elucidate their functional impact in disease. In neuroscience, recombinant viruses such as lentiviruses and adeno-associated viruses (AAVs) have been successfully used to target various cell types in the brain, although effective transduction of microglia is rare. In this review, we provide a short background of lentiviruses and AAVs, and strategies for designing recombinant viral vectors. Then, we will summarize recent literature on successful microglial transductions in vitro and in vivo, and discuss the current challenges. Finally, we provide guidelines for reporting the efficiency and specificity of viral targeting in microglia, which will enable the microglial research community to assess and improve methodologies for future studies.}, author = {Maes, Margaret E and Colombo, Gloria and Schulz, Rouven and Siegert, Sandra}, issn = {0304-3940}, journal = {Neuroscience Letters}, publisher = {Elsevier}, title = {{Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges}}, doi = {10.1016/j.neulet.2019.134310}, volume = {707}, year = {2019}, } @article{6513, abstract = {Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR5 1,2 and fuel the constant replenishment of the intestinal epithelium1. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells3,4, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium—irrespective of their location and pattern of LGR5 expression in the fetal gut tube—contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage5,6,7,8,9, revealing that stem-cell identity is an induced rather than a hardwired property.}, author = {Guiu, Jordi and Hannezo, Edouard B and Yui, Shiro and Demharter, Samuel and Ulyanchenko, Svetlana and Maimets, Martti and Jørgensen, Anne and Perlman, Signe and Lundvall, Lene and Mamsen, Linn Salto and Larsen, Agnete and Olesen, Rasmus H. and Andersen, Claus Yding and Thuesen, Lea Langhoff and Hare, Kristine Juul and Pers, Tune H. and Khodosevich, Konstantin and Simons, Benjamin D. and Jensen, Kim B.}, issn = {14764687}, journal = {Nature}, pages = {107--111}, publisher = {Springer Nature}, title = {{Tracing the origin of adult intestinal stem cells}}, doi = {10.1038/s41586-019-1212-5}, volume = {570}, year = {2019}, } @article{6564, abstract = {Optogenetics enables the spatio-temporally precise control of cell and animal behavior. Many optogenetic tools are driven by light-controlled protein–protein interactions (PPIs) that are repurposed from natural light-sensitive domains (LSDs). Applying light-controlled PPIs to new target proteins is challenging because it is difficult to predict which of the many available LSDs, if any, will yield robust light regulation. As a consequence, fusion protein libraries need to be prepared and tested, but methods and platforms to facilitate this process are currently not available. Here, we developed a genetic engineering strategy and vector library for the rapid generation of light-controlled PPIs. The strategy permits fusing a target protein to multiple LSDs efficiently and in two orientations. The public and expandable library contains 29 vectors with blue, green or red light-responsive LSDs, many of which have been previously applied ex vivo and in vivo. We demonstrate the versatility of the approach and the necessity for sampling LSDs by generating light-activated caspase-9 (casp9) enzymes. Collectively, this work provides a new resource for optical regulation of a broad range of target proteins in cell and developmental biology.}, author = {Tichy, Alexandra-Madelaine and Gerrard, Elliot J. and Legrand, Julien M.D. and Hobbs, Robin M. and Janovjak, Harald L}, issn = {10898638}, journal = {Journal of Molecular Biology}, number = {17}, pages = {3046--3055}, publisher = {Elsevier}, title = {{Engineering strategy and vector library for the rapid generation of modular light-controlled protein–protein interactions}}, doi = {10.1016/j.jmb.2019.05.033}, volume = {431}, year = {2019}, }