@article{8409, abstract = {The bacterial cell wall is composed of the peptidoglycan (PG), a large polymer that maintains the integrity of the bacterial cell. Due to its multi-gigadalton size, heterogeneity, and dynamics, atomic-resolution studies are inherently complex. Solid-state NMR is an important technique to gain insight into its structure, dynamics and interactions. Here, we explore the possibilities to study the PG with ultra-fast (100 kHz) magic-angle spinning NMR. We demonstrate that highly resolved spectra can be obtained, and show strategies to obtain site-specific resonance assignments and distance information. We also explore the use of proton-proton correlation experiments, thus opening the way for NMR studies of intact cell walls without the need for isotope labeling.}, author = {Bougault, Catherine and Ayala, Isabel and Vollmer, Waldemar and Simorre, Jean-Pierre and Schanda, Paul}, issn = {1047-8477}, journal = {Journal of Structural Biology}, keywords = {Structural Biology}, number = {1}, pages = {66--72}, publisher = {Elsevier}, title = {{Studying intact bacterial peptidoglycan by proton-detected NMR spectroscopy at 100 kHz MAS frequency}}, doi = {10.1016/j.jsb.2018.07.009}, volume = {206}, year = {2019}, } @article{8407, author = {Schanda, Paul}, issn = {1090-7807}, journal = {Journal of Magnetic Resonance}, keywords = {Nuclear and High Energy Physics, Biophysics, Biochemistry, Condensed Matter Physics}, pages = {180--186}, publisher = {Elsevier}, title = {{Relaxing with liquids and solids – A perspective on biomolecular dynamics}}, doi = {10.1016/j.jmr.2019.07.025}, volume = {306}, year = {2019}, } @article{8410, author = {Schanda, Paul and Chekmenev, Eduard Y.}, issn = {1439-4235}, journal = {ChemPhysChem}, number = {2}, pages = {177--177}, publisher = {Wiley}, title = {{NMR for Biological Systems}}, doi = {10.1002/cphc.201801100}, volume = {20}, year = {2019}, } @inproceedings{8570, abstract = {This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In its third edition, seven tools have been applied to solve six different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, CORA/SX, HyDRA, Hylaa, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.}, author = {Althoff, Matthias and Bak, Stanley and Forets, Marcelo and Frehse, Goran and Kochdumper, Niklas and Ray, Rajarshi and Schilling, Christian and Schupp, Stefan}, booktitle = {EPiC Series in Computing}, issn = {23987340}, location = {Montreal, Canada}, pages = {14--40}, publisher = {EasyChair}, title = {{ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics}}, doi = {10.29007/bj1w}, volume = {61}, year = {2019}, } @article{9016, abstract = {Inhibiting the histone H3–ASF1 (anti‐silencing function 1) protein–protein interaction (PPI) represents a potential approach for treating numerous cancers. As an α‐helix‐mediated PPI, constraining the key histone H3 helix (residues 118–135) is a strategy through which chemical probes might be elaborated to test this hypothesis. In this work, variant H3118–135 peptides bearing pentenylglycine residues at the i and i+4 positions were constrained by olefin metathesis. Biophysical analyses revealed that promotion of a bioactive helical conformation depends on the position at which the constraint is introduced, but that the potency of binding towards ASF1 is unaffected by the constraint and instead that enthalpy–entropy compensation occurs.}, author = {Bakail, May M and Rodriguez‐Marin, Silvia and Hegedüs, Zsófia and Perrin, Marie E. and Ochsenbein, Françoise and Wilson, Andrew J.}, issn = {1439-4227}, journal = {ChemBioChem}, number = {7}, pages = {891--895}, publisher = {Wiley}, title = {{Recognition of ASF1 by using hydrocarbon‐constrained peptides}}, doi = {10.1002/cbic.201800633}, volume = {20}, year = {2019}, }