@article{7007, abstract = {We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.}, author = {Mondelli, Marco and Hassani, S. Hamed and Urbanke, Rüdiger}, issn = {1999-4893}, journal = {Algorithms}, number = {10}, publisher = {MDPI}, title = {{A new coding paradigm for the primitive relay channel}}, doi = {10.3390/a12100218}, volume = {12}, year = {2019}, } @inproceedings{7035, abstract = {The aim of this short note is to expound one particular issue that was discussed during the talk [10] given at the symposium ”Researches on isometries as preserver problems and related topics” at Kyoto RIMS. That is, the role of Dirac masses by describing the isometry group of various metric spaces of probability measures. This article is of survey character, and it does not contain any essentially new results.From an isometric point of view, in some cases, metric spaces of measures are similar to C(K)-type function spaces. Similarity means here that their isometries are driven by some nice transformations of the underlying space. Of course, it depends on the particular choice of the metric how nice these transformations should be. Sometimes, as we will see, being a homeomorphism is enough to generate an isometry. But sometimes we need more: the transformation must preserve the underlying distance as well. Statements claiming that isometries in questions are necessarily induced by homeomorphisms are called Banach-Stone-type results, while results asserting that the underlying transformation is necessarily an isometry are termed as isometric rigidity results.As Dirac masses can be considered as building bricks of the set of all Borel measures, a natural question arises:Is it enough to understand how an isometry acts on the set of Dirac masses? Does this action extend uniquely to all measures?In what follows, we will thoroughly investigate this question.}, author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel}, booktitle = {Kyoto RIMS Kôkyûroku}, location = {Kyoto, Japan}, pages = {34--41}, publisher = {Research Institute for Mathematical Sciences, Kyoto University}, title = {{Dirac masses and isometric rigidity}}, volume = {2125}, year = {2019}, } @article{7055, abstract = {A recent class of topological nodal-line semimetals with the general formula MSiX (M = Zr, Hf and X = S, Se, Te) has attracted much experimental and theoretical interest due to their properties, particularly their large magnetoresistances and high carrier mobilities. The plateletlike nature of the MSiX crystals and their extremely low residual resistivities make measurements of the resistivity along the [001] direction extremely challenging. To accomplish such measurements, microstructures of single crystals were prepared using focused ion beam techniques. Microstructures prepared in this manner have very well-defined geometries and maintain their high crystal quality, verified by the observations of quantum oscillations. We present magnetoresistance and quantum oscillation data for currents applied along both [001] and [100] in ZrSiS and ZrSiSe, which are consistent with the nontrivial topology of the Dirac line-node, as determined by a measured π Berry phase. Surprisingly, we find that, despite the three dimensional nature of both the Fermi surfaces of ZrSiS and ZrSiSe, both the resistivity anisotropy under applied magnetic fields and the in-plane angular dependent magnetoresistance differ considerably between the two compounds. Finally, we discuss the role microstructuring can play in the study of these materials and our ability to make these microstructures free-standing.}, author = {Shirer, Kent R. and Modic, Kimberly A and Zimmerling, Tino and Bachmann, Maja D. and König, Markus and Moll, Philip J. W. and Schoop, Leslie and Mackenzie, Andrew P.}, issn = {2166-532X}, journal = {APL Materials}, number = {10}, publisher = {AIP}, title = {{Out-of-plane transport in ZrSiS and ZrSiSe microstructures}}, doi = {10.1063/1.5124568}, volume = {7}, year = {2019}, } @article{7057, abstract = {We present a high magnetic field study of NbP—a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be “topologically trivial” due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are “not quite” WSMs in zero magnetic field.}, author = {Modic, Kimberly A and Meng, Tobias and Ronning, Filip and Bauer, Eric D. and Moll, Philip J. W. and Ramshaw, B. J.}, issn = {2045-2322}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, title = {{Thermodynamic signatures of Weyl fermions in NbP}}, doi = {10.1038/s41598-018-38161-7}, volume = {9}, year = {2019}, } @article{7056, abstract = {In the Ca1−x La x FeAs2 (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x  =  0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T N  =  120 K, well above the one at lower doping (0.15  <  x  <  0.27). Below the onset of long-range magnetic order at T N, the electrical resistivity is strongly reduced and is dominated by electron–electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohler's rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors. }, author = {Martino, Edoardo and Bachmann, Maja D and Rossi, Lidia and Modic, Kimberly A and Zivkovic, Ivica and Rønnow, Henrik M and Moll, Philip J W and Akrap, Ana and Forró, László and Katrych, Sergiy}, issn = {1361-648X}, journal = {Journal of Physics: Condensed Matter}, number = {48}, publisher = {IOP Publishing}, title = {{Persistent antiferromagnetic order in heavily overdoped Ca1−x La x FeAs2}}, doi = {10.1088/1361-648x/ab3b43}, volume = {31}, year = {2019}, }