@inproceedings{7991,
abstract = {We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.},
author = {Avvakumov, Sergey and Nivasch, Gabriel},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {9783959771436},
issn = {18688969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Homotopic curve shortening and the affine curve-shortening flow}},
doi = {10.4230/LIPIcs.SoCG.2020.12},
volume = {164},
year = {2020},
}
@inproceedings{7992,
abstract = {Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.},
author = {Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {9783959771436},
issn = {18688969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Barycentric cuts through a convex body}},
doi = {10.4230/LIPIcs.SoCG.2020.62},
volume = {164},
year = {2020},
}
@inproceedings{7994,
abstract = {In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible.},
author = {Arroyo Guevara, Alan M and Bensmail, Julien and Bruce Richter, R.},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {9783959771436},
issn = {18688969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Extending drawings of graphs to arrangements of pseudolines}},
doi = {10.4230/LIPIcs.SoCG.2020.9},
volume = {164},
year = {2020},
}
@article{7995,
abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.},
author = {Perini, Samuel and Rafajlović, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger K.},
issn = {15585646},
journal = {Evolution},
number = {7},
pages = {1482--1497},
publisher = {Wiley},
title = {{Assortative mating, sexual selection, and their consequences for gene flow in Littorina}},
doi = {10.1111/evo.14027},
volume = {74},
year = {2020},
}
@phdthesis{7996,
abstract = {Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and
calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization.
Here we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element
resonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity.},
author = {Kukucka, Josip},
issn = {2663-337X},
pages = {178},
publisher = {IST Austria},
title = {{Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing}},
doi = {10.15479/AT:ISTA:7996},
year = {2020},
}