@misc{12987, abstract = {Chromosomal inversion polymorphisms, segments of chromosomes that are flipped in orientation and occur in reversed order in some individuals, have long been recognized to play an important role in local adaptation. They can reduce recombination in heterozygous individuals and thus help to maintain sets of locally adapted alleles. In a wide range of organisms, populations adapted to different habitats differ in frequency of inversion arrangements. However, getting a full understanding of the importance of inversions for adaptation requires confirmation of their influence on traits under divergent selection. Here, we studied a marine snail, Littorina saxatilis, that has evolved ecotypes adapted to wave exposure or crab predation. These two types occur in close proximity on different parts of the shore. Gene flow between them exists in contact zones. However, they exhibit strong phenotypic divergence in several traits under habitat-specific selection, including size, shape and behaviour. We used crosses between these ecotypes to identify genomic regions that explain variation in these traits by using QTL analysis and variance partitioning across linkage groups. We could show that previously detected inversion regions contribute to adaptive divergence. Some inversions influenced multiple traits suggesting that they contain sets of locally adaptive alleles. Our study also identified regions without known inversions that are important for phenotypic divergence. Thus, we provide a more complete overview of the importance of inversions in relation to the remaining genome.}, author = {Koch, Eva and Morales, Hernán E. and Larsson, Jenny and Westram, Anja M and Faria, Rui and Lemmon, Alan R. and Lemmon, E. Moriarty and Johannesson, Kerstin and Butlin, Roger K.}, publisher = {Dryad}, title = {{Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis}}, doi = {10.5061/DRYAD.ZGMSBCCB4}, year = {2021}, } @article{9408, abstract = {We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins. Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton, and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory. We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype.}, author = {Feng, Xudong and Liu, Jiafeng and Wang, Huamin and Yang, Yin and Bao, Hujun and Bickel, Bernd and Xu, Weiwei}, issn = {10772626}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {6}, publisher = {IEEE}, title = {{Computational design of skinned Quad-Robots}}, doi = {10.1109/TVCG.2019.2957218}, volume = {27}, year = {2021}, } @article{9410, abstract = {Antibiotic concentrations vary dramatically in the body and the environment. Hence, understanding the dynamics of resistance evolution along antibiotic concentration gradients is critical for predicting and slowing the emergence and spread of resistance. While it has been shown that increasing the concentration of an antibiotic slows resistance evolution, how adaptation to one antibiotic concentration correlates with fitness at other points along the gradient has not received much attention. Here, we selected populations of Escherichia coli at several points along a concentration gradient for three different antibiotics, asking how rapidly resistance evolved and whether populations became specialized to the antibiotic concentration they were selected on. Populations selected at higher concentrations evolved resistance more slowly but exhibited equal or higher fitness across the whole gradient. Populations selected at lower concentrations evolved resistance rapidly, but overall fitness in the presence of antibiotics was lower. However, these populations readily adapted to higher concentrations upon subsequent selection. Our results indicate that resistance management strategies must account not only for the rates of resistance evolution but also for the fitness of evolved strains.}, author = {Lagator, Mato and Uecker, Hildegard and Neve, Paul}, issn = {1744957X}, journal = {Biology letters}, number = {5}, publisher = {Royal Society of London}, title = {{Adaptation at different points along antibiotic concentration gradients}}, doi = {10.1098/rsbl.2020.0913}, volume = {17}, year = {2021}, } @article{9412, abstract = {We extend our recent result [22] on the central limit theorem for the linear eigenvalue statistics of non-Hermitian matrices X with independent, identically distributed complex entries to the real symmetry class. We find that the expectation and variance substantially differ from their complex counterparts, reflecting (i) the special spectral symmetry of real matrices onto the real axis; and (ii) the fact that real i.i.d. matrices have many real eigenvalues. Our result generalizes the previously known special cases where either the test function is analytic [49] or the first four moments of the matrix elements match the real Gaussian [59, 44]. The key element of the proof is the analysis of several weakly dependent Dyson Brownian motions (DBMs). The conceptual novelty of the real case compared with [22] is that the correlation structure of the stochastic differentials in each individual DBM is non-trivial, potentially even jeopardising its well-posedness.}, author = {Cipolloni, Giorgio and Erdös, László and Schröder, Dominik J}, issn = {10836489}, journal = {Electronic Journal of Probability}, publisher = {Institute of Mathematical Statistics}, title = {{Fluctuation around the circular law for random matrices with real entries}}, doi = {10.1214/21-EJP591}, volume = {26}, year = {2021}, } @article{9407, abstract = {High impact epidemics constitute one of the largest threats humanity is facing in the 21st century. In the absence of pharmaceutical interventions, physical distancing together with testing, contact tracing and quarantining are crucial in slowing down epidemic dynamics. Yet, here we show that if testing capacities are limited, containment may fail dramatically because such combined countermeasures drastically change the rules of the epidemic transition: Instead of continuous, the response to countermeasures becomes discontinuous. Rather than following the conventional exponential growth, the outbreak that is initially strongly suppressed eventually accelerates and scales faster than exponential during an explosive growth period. As a consequence, containment measures either suffice to stop the outbreak at low total case numbers or fail catastrophically if marginally too weak, thus implying large uncertainties in reliably estimating overall epidemic dynamics, both during initial phases and during second wave scenarios.}, author = {Scarselli, Davide and Budanur, Nazmi B and Timme, Marc and Hof, Björn}, issn = {20411723}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Discontinuous epidemic transition due to limited testing}}, doi = {10.1038/s41467-021-22725-9}, volume = {12}, year = {2021}, }