@article{9332, abstract = {Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL–RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.}, author = {Ötvös, Krisztina and Miskolczi, Pál and Marhavý, Peter and Cruz-Ramírez, Alfredo and Benková, Eva and Robert, Stéphanie and Bakó, László}, issn = {1422-0067}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {MDPI}, title = {{Pickle recruits retinoblastoma related 1 to control lateral root formation in arabidopsis}}, doi = {10.3390/ijms22083862}, volume = {22}, year = {2021}, } @article{9333, abstract = {We revise a previous result about the Fröhlich dynamics in the strong coupling limit obtained in Griesemer (Rev Math Phys 29(10):1750030, 2017). In the latter it was shown that the Fröhlich time evolution applied to the initial state φ0⊗ξα, where φ0 is the electron ground state of the Pekar energy functional and ξα the associated coherent state of the phonons, can be approximated by a global phase for times small compared to α2. In the present note we prove that a similar approximation holds for t=O(α2) if one includes a nontrivial effective dynamics for the phonons that is generated by an operator proportional to α−2 and quadratic in creation and annihilation operators. Our result implies that the electron ground state remains close to its initial state for times of order α2, while the phonon fluctuations around the coherent state ξα can be described by a time-dependent Bogoliubov transformation.}, author = {Mitrouskas, David Johannes}, issn = {15730530}, journal = {Letters in Mathematical Physics}, publisher = {Springer Nature}, title = {{A note on the Fröhlich dynamics in the strong coupling limit}}, doi = {10.1007/s11005-021-01380-7}, volume = {111}, year = {2021}, } @article{9335, abstract = {Various degenerate diffusion equations exhibit a waiting time phenomenon: depending on the “flatness” of the compactly supported initial datum at the boundary of the support, the support of the solution may not expand for a certain amount of time. We show that this phenomenon is captured by particular Lagrangian discretizations of the porous medium and the thin film equations, and we obtain sufficient criteria for the occurrence of waiting times that are consistent with the known ones for the original PDEs. For the spatially discrete solution, the waiting time phenomenon refers to a deviation of the edge of support from its original position by a quantity comparable to the mesh width, over a mesh-independent time interval. Our proof is based on estimates on the fluid velocity in Lagrangian coordinates. Combining weighted entropy estimates with an iteration technique à la Stampacchia leads to upper bounds on free boundary propagation. Numerical simulations show that the phenomenon is already clearly visible for relatively coarse discretizations.}, author = {Fischer, Julian L and Matthes, Daniel}, issn = {0036-1429}, journal = {SIAM Journal on Numerical Analysis}, number = {1}, pages = {60--87}, publisher = {Society for Industrial and Applied Mathematics}, title = {{The waiting time phenomenon in spatially discretized porous medium and thin film equations}}, doi = {10.1137/19M1300017}, volume = {59}, year = {2021}, } @article{9349, abstract = {The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.}, author = {Lenne, Pierre François and Munro, Edwin and Heemskerk, Idse and Warmflash, Aryeh and Bocanegra, Laura and Kishi, Kasumi and Kicheva, Anna and Long, Yuchen and Fruleux, Antoine and Boudaoud, Arezki and Saunders, Timothy E. and Caldarelli, Paolo and Michaut, Arthur and Gros, Jerome and Maroudas-Sacks, Yonit and Keren, Kinneret and Hannezo, Edouard B and Gartner, Zev J. and Stormo, Benjamin and Gladfelter, Amy and Rodrigues, Alan and Shyer, Amy and Minc, Nicolas and Maître, Jean Léon and Di Talia, Stefano and Khamaisi, Bassma and Sprinzak, David and Tlili, Sham}, issn = {1478-3975}, journal = {Physical biology}, number = {4}, publisher = {IOP Publishing}, title = {{Roadmap for the multiscale coupling of biochemical and mechanical signals during development}}, doi = {10.1088/1478-3975/abd0db}, volume = {18}, year = {2021}, } @article{9334, abstract = {Polaritons with directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals promise unprecedented manipulation of light at the nanoscale. However, these polaritons present a crucial limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, imposing forbidden directions of propagation. Here, we demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW crystal (α-phase molybdenum trioxide) can be directed along forbidden directions by inducing an optical topological transition, which emerges when the slab is placed on a substrate with a given negative permittivity (4H–silicon carbide). By visualizing the transition in real space, we observe exotic polaritonic states between mutually orthogonal hyperbolic regimes, which unveil the topological origin of the transition: a gap opening in the dispersion. This work provides insights into optical topological transitions in vdW crystals, which introduce a route to direct light at the nanoscale.}, author = {Duan, J. and Álvarez-Pérez, G. and Voronin, K. V. and Prieto Gonzalez, Ivan and Taboada-Gutiérrez, J. and Volkov, V. S. and Martín-Sánchez, J. and Nikitin, A. Y. and Alonso-González, P.}, issn = {23752548}, journal = {Science Advances}, number = {14}, publisher = {AAAS}, title = {{Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition}}, doi = {10.1126/sciadv.abf2690}, volume = {7}, year = {2021}, }