@inbook{12866, abstract = {Autism spectrum disorder (ASD) and epilepsy are frequently comorbid neurodevelopmental disorders. Extensive research has demonstrated shared pathological pathways, etiologies, and phenotypes. Many risk factors for these disorders, like genetic mutations and environmental pressures, are linked to changes in childhood brain development, which is a critical period for their manifestation. Decades of research have yielded many signatures for ASD and epilepsy, some shared and others unique or opposing. The anatomical, physiological, and behavioral correlates of these disorders are discussed in this chapter in the context of understanding shared pathological pathways. We end with important takeaways on the presentation, prevention, intervention, and policy changes for ASD and epilepsy. This chapter aims to explore the complexity of these disorders, both in etiology and phenotypes, with the further goal of appreciating the expanse of unknowns still to explore about the brain.}, author = {Currin, Christopher and Beyer, Chad}, booktitle = {Encyclopedia of Child and Adolescent Health}, editor = {Halpern-Felsher, Bonnie}, isbn = {9780128188736}, pages = {86--98}, publisher = {Elsevier}, title = {{Altered childhood brain development in autism and epilepsy}}, doi = {10.1016/b978-0-12-818872-9.00129-1}, year = {2023}, } @phdthesis{12809, abstract = {Understanding the mechanisms of learning and memory formation has always been one of the main goals in neuroscience. Already Pavlov (1927) in his early days has used his classic conditioning experiments to study the neural mechanisms governing behavioral adaptation. What was not known back then was that the part of the brain that is largely responsible for this type of associative learning is the cerebellum. Since then, plenty of theories on cerebellar learning have emerged. Despite their differences, one thing they all have in common is that learning relies on synaptic and intrinsic plasticity. The goal of my PhD project was to unravel the molecular mechanisms underlying synaptic plasticity in two synapses that have been shown to be implicated in motor learning, in an effort to understand how learning and memory formation are processed in the cerebellum. One of the earliest and most well-known cerebellar theories postulates that motor learning largely depends on long-term depression at the parallel fiber-Purkinje cell (PC-PC) synapse. However, the discovery of other types of plasticity in the cerebellar circuitry, like long-term potentiation (LTP) at the PC-PC synapse, potentiation of molecular layer interneurons (MLIs), and plasticity transfer from the cortex to the cerebellar/ vestibular nuclei has increased the popularity of the idea that multiple sites of plasticity might be involved in learning. Still a lot remains unknown about the molecular mechanisms responsible for these types of plasticity and whether they occur during physiological learning. In the first part of this thesis we have analyzed the variation and nanodistribution of voltagegated calcium channels (VGCCs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type glutamate receptors (AMPARs) on the parallel fiber-Purkinje cell synapse after vestibuloocular reflex phase reversal adaptation, a behavior that has been suggested to rely on PF-PC LTP. We have found that on the last day of adaptation there is no learning trace in form of VGCCs nor AMPARs variation at the PF-PC synapse, but instead a decrease in the number of PF-PC synapses. These data seem to support the view that learning is only stored in the cerebellar cortex in an initial learning phase, being transferred later to the vestibular nuclei. Next, we have studied the role of MLIs in motor learning using a relatively simple and well characterized behavioral paradigm – horizontal optokinetic reflex (HOKR) adaptation. We have found behavior-induced MLI potentiation in form of release probability increase that could be explained by the increase of VGCCs at the presynaptic side. Our results strengthen the idea of distributed cerebellar plasticity contributing to learning and provide a novel mechanism for release probability increase. }, author = {Alcarva, Catarina}, issn = {2663 - 337X}, pages = {115}, publisher = {Institute of Science and Technology Austria}, title = {{Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning}}, doi = {10.15479/at:ista:12809}, year = {2023}, } @article{12668, abstract = {Background: Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. Results: Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal–distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. Conclusions: Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.}, author = {Zhao, Long and Yang, Yiman and Chen, Jinchao and Lin, Xuelei and Zhang, Hao and Wang, Hao and Wang, Hongzhe and Bie, Xiaomin and Jiang, Jiafu and Feng, Xiaoqi and Fu, Xiangdong and Zhang, Xiansheng and Du, Zhuo and Xiao, Jun}, issn = {1474-760X}, journal = {Genome Biology}, publisher = {Springer Nature}, title = {{Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat}}, doi = {10.1186/s13059-022-02844-2}, volume = {24}, year = {2023}, } @article{12920, abstract = {The multicomponent approach allows to incorporate several functionalities into a single covalent organic framework (COF) and consequently allows the construction of bifunctional materials for cooperative catalysis. The well-defined structure of such multicomponent COFs is furthermore ideally suited for structure-activity relationship studies. We report a series of multicomponent COFs that contain acridine- and 2,2’-bipyridine linkers connected through 1,3,5-benzenetrialdehyde derivatives. The acridine motif is responsible for broad light absorption, while the bipyridine unit enables complexation of nickel catalysts. These features enable the usage of the framework materials as catalysts for light-mediated carbon−heteroatom cross-couplings. Variation of the node units shows that the catalytic activity correlates to the keto-enamine tautomer isomerism. This allows switching between high charge-carrier mobility and persistent, localized charge-separated species depending on the nodes, a tool to tailor the materials for specific reactions. Moreover, nickel-loaded COFs are recyclable and catalyze cross-couplings even using red light irradiation.}, author = {Traxler, Michael and Reischauer, Susanne and Vogl, Sarah and Roeser, Jérôme and Rabeah, Jabor and Penschke, Christopher and Saalfrank, Peter and Pieber, Bartholomäus and Thomas, Arne}, issn = {1521-3765}, journal = {Chemistry – A European Journal}, keywords = {General Chemistry, Catalysis, Organic Chemistry}, number = {4}, publisher = {Wiley}, title = {{Programmable photocatalytic activity of multicomponent covalent organic frameworks used as metallaphotocatalysts}}, doi = {10.1002/chem.202202967}, volume = {29}, year = {2023}, } @article{12921, abstract = {Visible-light photocatalysis provides numerous useful methodologies for synthetic organic chemistry. However, the mechanisms of these reactions are often not fully understood. Common mechanistic experiments mainly aim to characterize excited state properties of photocatalysts and their interaction with other species. Recently, in situ reaction monitoring using dedicated techniques was shown to be well-suited for the identification of intermediates and to obtain kinetic insights, thereby providing more holistic pictures of the reactions of interest. This minireview surveys these technologies and discusses selected examples where reaction monitoring was used to elucidate the mechanism of photocatalytic reactions.}, author = {Madani, Amiera and Pieber, Bartholomäus}, issn = {1867-3899}, journal = {ChemCatChem}, keywords = {Inorganic Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Catalysis}, number = {7}, publisher = {Wiley}, title = {{In situ reaction monitoring in photocatalytic organic synthesis}}, doi = {10.1002/cctc.202201583}, volume = {15}, year = {2023}, }