@article{14795, abstract = {Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.}, author = {Arslan, Feyza N and Hannezo, Edouard B and Merrin, Jack and Loose, Martin and Heisenberg, Carl-Philipp J}, issn = {1879-0445}, journal = {Current Biology}, number = {1}, pages = {171--182.e8}, publisher = {Elsevier}, title = {{Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts}}, doi = {10.1016/j.cub.2023.11.067}, volume = {34}, year = {2024}, } @article{14802, abstract = {Frequency-stable lasers form the back bone of precision measurements in science and technology. Such lasers typically attain their stability through frequency locking to reference cavities. State-of-the-art locking performances to date had been achieved using frequency modulation based methods, complemented with active drift cancellation systems. We demonstrate an all passive, modulation-free laser-cavity locking technique (squash locking) that utilizes changes in spatial beam ellipticity for error signal generation, and a coherent polarization post-selection for noise resilience. By comparing two identically built proof-of-principle systems, we show a frequency locking instability of 5×10−7 relative to the cavity linewidth at 10 s averaging. The results surpass the demonstrated performances of methods engineered over the last five decades, potentially enabling an advancement in the precision control of lasers, while creating avenues for bridging the performance gaps between industrial grade lasers with scientific ones due to the afforded simplicity and scalability.}, author = {Diorico, Fritz R and Zhutov, Artem and Hosten, Onur}, issn = {2334-2536}, journal = {Optica}, keywords = {Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials}, number = {1}, pages = {26--31}, publisher = {Optica Publishing Group}, title = {{Laser-cavity locking utilizing beam ellipticity: accessing the 10−7 instability scale relative to cavity linewidth}}, doi = {10.1364/optica.507451}, volume = {11}, year = {2024}, } @article{14820, abstract = {We consider a natural problem dealing with weighted packet selection across a rechargeable link, which e.g., finds applications in cryptocurrency networks. The capacity of a link (u, v) is determined by how many nodes u and v allocate for this link. Specifically, the input is a finite ordered sequence of packets that arrive in both directions along a link. Given (u, v) and a packet of weight x going from u to v, node u can either accept or reject the packet. If u accepts the packet, the capacity on link (u, v) decreases by x. Correspondingly, v's capacity on increases by x. If a node rejects the packet, this will entail a cost affinely linear in the weight of the packet. A link is “rechargeable” in the sense that the total capacity of the link has to remain constant, but the allocation of capacity at the ends of the link can depend arbitrarily on the nodes' decisions. The goal is to minimise the sum of the capacity injected into the link and the cost of rejecting packets. We show that the problem is NP-hard, but can be approximated efficiently with a ratio of (1+E) . (1+3) for some arbitrary E>0.}, author = {Schmid, Stefan and Svoboda, Jakub and Yeo, Michelle X}, issn = {0304-3975}, journal = {Theoretical Computer Science}, keywords = {General Computer Science, Theoretical Computer Science}, publisher = {Elsevier}, title = {{Weighted packet selection for rechargeable links in cryptocurrency networks: Complexity and approximation}}, doi = {10.1016/j.tcs.2023.114353}, volume = {989}, year = {2024}, } @article{14793, abstract = {Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a sin(2y) CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.}, author = {Valentini, Marco and Sagi, Oliver and Baghumyan, Levon and de Gijsel, Thijs and Jung, Jason and Calcaterra, Stefano and Ballabio, Andrea and Aguilera Servin, Juan L and Aggarwal, Kushagra and Janik, Marian and Adletzberger, Thomas and Seoane Souto, Rubén and Leijnse, Martin and Danon, Jeroen and Schrade, Constantin and Bakkers, Erik and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium}}, doi = {10.1038/s41467-023-44114-0}, volume = {15}, year = {2024}, } @article{14797, abstract = {We study a random matching problem on closed compact 2 -dimensional Riemannian manifolds (with respect to the squared Riemannian distance), with samples of random points whose common law is absolutely continuous with respect to the volume measure with strictly positive and bounded density. We show that given two sequences of numbers n and m=m(n) of points, asymptotically equivalent as n goes to infinity, the optimal transport plan between the two empirical measures μn and νm is quantitatively well-approximated by (Id,exp(∇hn))#μn where hn solves a linear elliptic PDE obtained by a regularized first-order linearization of the Monge-Ampère equation. This is obtained in the case of samples of correlated random points for which a stretched exponential decay of the α -mixing coefficient holds and for a class of discrete-time Markov chains having a unique absolutely continuous invariant measure with respect to the volume measure.}, author = {Clozeau, Nicolas and Mattesini, Francesco}, issn = {1432-2064}, journal = {Probability Theory and Related Fields}, publisher = {Springer Nature}, title = {{Annealed quantitative estimates for the quadratic 2D-discrete random matching problem}}, doi = {10.1007/s00440-023-01254-0}, year = {2024}, }