@article{1934, abstract = {The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely control the overall auxin flow capacity, but might also act as a polarizing cue and control the auxin stream directionality during plant organogenesis. Cytokinin enhances the PIN-FORMED1 (PIN1) auxin transporter depletion at specific polar domains, thus rearranging the cellular PIN polarities and directly regulating the auxin flow direction. This selective cytokinin sensitivity correlates with the PIN protein phosphorylation degree. PIN1 phosphomimicking mutations, as well as enhanced phosphorylation in plants with modulated activities of PIN-specific kinases and phosphatases, desensitize PIN1 to cytokinin. Our results reveal conceptually novel, cytokinin-driven polarization mechanism that operates in developmental processes involving rapid auxin stream redirection, such as lateral root organogenesis, in which a gradual PIN polarity switch defines the growth axis of the newly formed organ.}, author = {Marhavy, Peter and Duclercq, Jérôme and Weller, Benjamin and Feraru, Elena and Bielach, Agnieszka and Offringa, Remko and Friml, Jirí and Schwechheimer, Claus and Murphy, Angus and Benková, Eva}, journal = {Current Biology}, number = {9}, pages = {1031 -- 1037}, publisher = {Cell Press}, title = {{Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis}}, doi = {10.1016/j.cub.2014.04.002}, volume = {24}, year = {2014}, } @article{1932, abstract = {The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.}, author = {Trotter, Meredith and Weissman, Daniel and Peterson, Grant and Peck, Kayla and Masel, Joanna}, journal = {Evolution}, number = {12}, pages = {3357 -- 3367}, publisher = {Wiley-Blackwell}, title = {{Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations}}, doi = {10.1111/evo.12517}, volume = {68}, year = {2014}, } @article{1930, abstract = {(Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.}, author = {Günther, David and Jacobson, Alec and Reininghaus, Jan and Seidel, Hans and Sorkine Hornung, Olga and Weinkauf, Tino}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, pages = {2585 -- 2594}, publisher = {IEEE}, title = {{Fast and memory-efficient topological denoising of 2D and 3D scalar fields}}, doi = {10.1109/TVCG.2014.2346432}, volume = {20}, year = {2014}, } @article{1933, abstract = {The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.}, author = {Hatakeyama, Jun and Wakamatsu, Yoshio and Nagafuchi, Akira and Kageyama, Ryoichiro and Shigemoto, Ryuichi and Shimamura, Kenji}, journal = {Development}, number = {8}, pages = {1671 -- 1682}, publisher = {Company of Biologists}, title = {{Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates}}, doi = {10.1242/dev.102988}, volume = {141}, year = {2014}, } @article{1931, abstract = {A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP) and homeostatic plasticity (intrinsic excitability and synaptic scaling). We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.}, author = {Savin, Cristina and Triesch, Jochen}, journal = {Frontiers in Computational Neuroscience}, number = {MAY}, publisher = {Frontiers Research Foundation}, title = {{Emergence of task-dependent representations in working memory circuits}}, doi = {10.3389/fncom.2014.00057}, volume = {8}, year = {2014}, } @article{1937, abstract = {We prove the edge universality of the beta ensembles for any β ≥ 1, provided that the limiting spectrum is supported on a single interval, and the external potential is C4 and regular. We also prove that the edge universality holds for generalized Wigner matrices for all symmetry classes. Moreover, our results allow us to extend bulk universality for beta ensembles from analytic potentials to potentials in class C4.}, author = {Bourgade, Paul and Erdös, László and Yau, Horngtzer}, journal = {Communications in Mathematical Physics}, number = {1}, pages = {261 -- 353}, publisher = {Springer}, title = {{Edge universality of beta ensembles}}, doi = {10.1007/s00220-014-2120-z}, volume = {332}, year = {2014}, } @misc{1981, abstract = {Variation in mitochondrial DNA is often assumed to be neutral and is used to construct the genealogical relationships among populations and species. However, if extant variation is the result of episodes of positive selection, these genealogies may be incorrect, although this information itself may provide biologically and evolutionary meaningful information. In fact, positive Darwinian selection has been detected in the mitochondrial-encoded subunits that comprise complex I from diverse taxa with seemingly dissimilar bioenergetic life histories, but the functional implications of the selected sites are unknown. Complex I produces roughly 40% of the proton flux that is used to synthesize ATP from ADP, and a functional model based on the high-resolution structure of complex I described a unique biomechanical apparatus for proton translocation. We reported positive selection at sites in this apparatus during the evolution of Pacific salmon, and it appeared this was also the case in published reports from other taxa, but a comparison among studies was difficult because different statistical tests were used to detect selection and oftentimes, specific sites were not reported. Here we review the literature of positive selection in mitochondrial genomes, the statistical tests used to detect selection, and the structural and functional models that are currently available to study the physiological implications of selection. We then search for signatures of positive selection among the coding mitochondrial genomes of 237 species with a common set of tests and verify that the ND5 subunit of complex I is a repeated target of positive Darwinian selection in diverse taxa. We propose a novel hypothesis to explain the results based on their bioenergetic life histories and provide a guide for laboratory and field studies to test this hypothesis.}, author = {Garvin, Michael R and Bielawski, Joseph P and Leonid Sazanov and Gharrett, Anthony J}, booktitle = {Journal of Zoological Systematics and Evolutionary Research}, number = {1}, pages = {1 -- 17}, publisher = {Wiley-Blackwell}, title = {{Review and meta-analysis of natural selection in mitochondrial complex I in metazoans}}, doi = {10.1111/jzs.12079}, volume = {53}, year = {2014}, } @article{1980, abstract = {Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors.}, author = {Heikal, Adam and Nakatani, Yoshio and Dunn, Elyse A and Weimar, Marion R and Day, Catherine and Baker, Edward N and Lott, Shaun J and Leonid Sazanov and Cook, Gregory}, journal = {Molecular Microbiology}, number = {5}, pages = {950 -- 964}, publisher = {Wiley-Blackwell}, title = {{Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation}}, doi = {10.1111/mmi.12507}, volume = {91}, year = {2014}, } @article{1979, abstract = {NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved “core” subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine.}, author = {Leonid Sazanov}, journal = {Journal of Bioenergetics and Biomembranes}, number = {4}, pages = {247 -- 253}, publisher = {Springer}, title = {{The mechanism of coupling between electron transfer and proton translocation in respiratory complex I}}, doi = {10.1007/s10863-014-9554-z}, volume = {46}, year = {2014}, } @article{1989, abstract = {During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling.}, author = {Nguyen, Phuong A and Groen, Aaron C and Martin Loose and Ishihara, Keisuke and Wühr, Martin and Field, Christine M and Mitchison, Timothy J}, journal = {Science}, number = {6206}, pages = {244 -- 247}, publisher = {American Association for the Advancement of Science}, title = {{Spatial organization of cytokinesis signaling reconstituted in a cell-free system}}, doi = {10.1126/science.1256773}, volume = {346}, year = {2014}, } @article{1990, abstract = {Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other's assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.}, author = {Martin Loose and Mitchison, Timothy J}, journal = {Nature Cell Biology}, number = {1}, pages = {38 -- 46}, publisher = {Nature Publishing Group}, title = {{The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns}}, doi = {10.1038/ncb2885}, volume = {16}, year = {2014}, } @article{1996, abstract = {Auxin polar transport, local maxima, and gradients have become an importantmodel system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels.}, author = {Hazak, Ora and Obolski, Uri and Prat, Tomas and Friml, Jiří and Hadany, Lilach and Yalovsky, Shaul}, journal = {PNAS}, number = {50}, pages = {E5471 -- E5479}, publisher = {National Academy of Sciences}, title = {{Bimodal regulation of ICR1 levels generates self-organizing auxin distribution}}, doi = {10.1073/pnas.1413918111}, volume = {111}, year = {2014}, } @article{1994, abstract = {The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans [1]. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants [2-5]. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants.}, author = {Viaene, Tom and Landberg, Katarina and Thelander, Mattias and Medvecka, Eva and Pederson, Eric and Feraru, Elena and Cooper, Endymion and Karimi, Mansour and Delwiche, Charles and Ljung, Karin and Geisler, Markus and Sundberg, Eva and Friml, Jirí}, journal = {Current Biology}, number = {23}, pages = {2786 -- 2791}, publisher = {Cell Press}, title = {{Directional auxin transport mechanisms in early diverging land plants}}, doi = {10.1016/j.cub.2014.09.056}, volume = {24}, year = {2014}, } @article{1995, abstract = {Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures nonlinear and nonreciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.}, author = {Fratini, Filippo and Mascarenhas, Eduardo and Safari, Laleh and Poizat, Jean and Valente, Daniel and Auffèves, Alexia and Gerace, Dario and Santos, Marcelo}, journal = {Physical Review Letters}, number = {24}, publisher = {American Physical Society}, title = {{Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification}}, doi = {10.1103/PhysRevLett.113.243601}, volume = {113}, year = {2014}, } @article{1998, abstract = {Immune systems are able to protect the body against secondary infection with the same parasite. In insect colonies, this protection is not restricted to the level of the individual organism, but also occurs at the societal level. Here, we review recent evidence for and insights into the mechanisms underlying individual and social immunisation in insects. We disentangle general immune-protective effects from specific immune memory (priming), and examine immunisation in the context of the lifetime of an individual and that of a colony, and of transgenerational immunisation that benefits offspring. When appropriate, we discuss parallels with disease defence strategies in human societies. We propose that recurrent parasitic threats have shaped the evolution of both the individual immune systems and colony-level social immunity in insects.}, author = {El Masri, Leila and Cremer, Sylvia}, journal = {Trends in Immunology}, number = {10}, pages = {471 -- 482}, publisher = {Elsevier}, title = {{Individual and social immunisation in insects}}, doi = {10.1016/j.it.2014.08.005}, volume = {35}, year = {2014}, } @article{2002, abstract = {Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outsideout patch recordings from CA1 pyramidal neuron axons revealed a high density of a-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.}, author = {Kim, Sooyun}, journal = {PLoS One}, number = {11}, publisher = {Public Library of Science}, title = {{Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus}}, doi = {10.1371/journal.pone.0113124}, volume = {9}, year = {2014}, } @article{2003, abstract = {Learning can be facilitated by previous knowledge when it is organized into relational representations forming schemas. In this issue of Neuron, McKenzie et al. (2014) demonstrate that the hippocampus rapidly forms interrelated, hierarchical memory representations to support schema-based learning.}, author = {O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Neuron}, number = {1}, pages = {8 -- 10}, publisher = {Elsevier}, title = {{Learning by example in the hippocampus}}, doi = {10.1016/j.neuron.2014.06.013}, volume = {83}, year = {2014}, } @article{2011, abstract = {The protection of privacy of individual-level information in genome-wide association study (GWAS) databases has been a major concern of researchers following the publication of “an attack” on GWAS data by Homer et al. (2008). Traditional statistical methods for confidentiality and privacy protection of statistical databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach that provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new methods to release aggregate GWAS data without compromising an individual’s privacy. We extend the methods developed in Uhler et al. (2013) for releasing differentially-private χ2χ2-statistics by allowing for arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We also provide a new interpretation by assuming the controls’ data are known, which is a realistic assumption because some GWAS use publicly available data as controls. We assess the performance of the proposed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private release mechanism proposed by Johnson and Shmatikov (2013).}, author = {Yu, Fei and Fienberg, Stephen and Slaković, Alexandra and Uhler, Caroline}, journal = {Journal of Biomedical Informatics}, pages = {133 -- 141}, publisher = {Elsevier}, title = {{Scalable privacy-preserving data sharing methodology for genome-wide association studies}}, doi = {10.1016/j.jbi.2014.01.008}, volume = {50}, year = {2014}, } @article{2005, abstract = {By eliciting a natural exploratory behavior in rats, head scanning, a study reveals that hippocampal place cells form new, stable firing fields in those locations where the behavior has just occurred.}, author = {Dupret, David and Csicsvari, Jozsef L}, journal = {Nature Neuroscience}, number = {5}, pages = {643 -- 644}, publisher = {Nature Publishing Group}, title = {{Turning heads to remember places}}, doi = {10.1038/nn.3700}, volume = {17}, year = {2014}, } @misc{2007, abstract = {Maximum likelihood estimation under relational models, with or without the overall effect. For more information see the reference manual}, author = {Klimova, Anna and Rudas, Tamás}, publisher = {The Comprehensive R Archive Network}, title = {{gIPFrm: Generalized iterative proportional fitting for relational models}}, year = {2014}, }