@inproceedings{11870, abstract = {We consider dynamic algorithms for maintaining Single-Source Reachability (SSR) and approximate Single-Source Shortest Paths (SSSP) on n-node m-edge directed graphs under edge deletions (decremental algorithms). The previous fastest algorithm for SSR and SSSP goes back three decades to Even and Shiloach (JACM 1981); it has O(1) query time and O(mn) total update time (i.e., linear amortized update time if all edges are deleted). This algorithm serves as a building block for several other dynamic algorithms. The question whether its total update time can be improved is a major, long standing, open problem. In this paper, we answer this question affirmatively. We obtain a randomized algorithm which, in a simplified form, achieves an Õ(mn0.984) expected total update time for SSR and (1 + ε)-approximate SSSP, where Õ(·) hides poly log n. We also extend our algorithm to achieve roughly the same running time for Strongly Connected Components (SCC), improving the algorithm of Roditty and Zwick (FOCS 2002), and an algorithm that improves the Õ (mn log W)-time algorithm of Bernstein (STOC 2013) for approximating SSSP on weighted directed graphs, where the edge weights are integers from 1 to W. All our algorithms have constant query time in the worst case.}, author = {Henzinger, Monika H and Krinninger, Sebastian and Nanongkai, Danupon}, booktitle = {46th Annual ACM Symposium on Theory of Computing}, isbn = {978-145032710-7}, issn = {0737-8017}, location = {New York, NY, United States}, publisher = {Association for Computing Machinery}, title = {{Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs}}, doi = {10.1145/2591796.2591869}, year = {2014}, } @inproceedings{11876, abstract = {We study dynamic (1 + ∊)-approximation algorithms for the single-source shortest paths problem in an unweighted undirected n-node m-edge graph under edge deletions. The fastest algorithm for this problem is an algorithm with O(n2+o(1)) total update time and constant query time by Bernstein and Roditty (SODA 2011). In this paper, we improve the total update time to O(n1.8+o(1) + m1+o(1)) while keeping the query time constant. This running time is essentially tight when m = Ω(n1.8) since we need Ω(m) time even in the static setting. For smaller values of m, the running time of our algorithm is subquadratic, and is the first that breaks through the quadratic time barrier. In obtaining this result, we develop a fast algorithm for what we call center cover data structure. We also make non-trivial extensions to our previous techniques called lazy-update and monotone Even-Shiloach trees (ICALP 2013 and FOCS 2013). As by-products of our new techniques, we obtain two new results for the decremental all-pairs shortest-paths problem. Our first result is the first approximation algorithm whose total update time is faster than Õ(mn) for all values of m. Our second result is a new trade-off between the total update time and the additive approximation guarantee.}, author = {Henzinger, Monika H and Krinninger, Sebastian and Nanongkai, Danupon}, booktitle = {25th Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {978-1-61197-338-9}, location = {Portland, OR, United States}, pages = {1053--1072}, publisher = {Society for Industrial and Applied Mathematics}, title = {{A subquadratic-time algorithm for decremental single-source shortest paths}}, doi = {10.1137/1.9781611973402.79}, year = {2014}, } @inproceedings{11875, abstract = {We present the first deterministic data structures for maintaining approximate minimum vertex cover and maximum matching in a fully dynamic graph in time per update. In particular, for minimum vertex cover we provide deterministic data structures for maintaining a (2 + ε) approximation in O(log n/ε2) amortized time per update. For maximum matching, we show how to maintain a (3 + e) approximation in O(m1/3/ε2) amortized time per update, and a (4 + ε) approximation in O(m1/3/ε2) worst-case time per update. Our data structure for fully dynamic minimum vertex cover is essentially near-optimal and settles an open problem by Onak and Rubinfeld [13].}, author = {Bhattacharya, Sayan and Henzinger, Monika H and Italiano, Giuseppe F.}, booktitle = {26th Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {978-1-61197-374-7}, location = {San Diego, CA, United States}, pages = {785--804}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Deterministic fully dynamic data structures for vertex cover and matching}}, doi = {10.1137/1.9781611973730.54}, year = {2014}, } @article{119, abstract = {Observations of flowing granular matter have suggested that same-material tribocharging depends on particle size, typically rendering large grains positive and small ones negative. Models assuming the transfer of trapped electrons can account for this trend, but have not been validated. Tracking individual grains in an electric field, we show quantitatively that charge is transferred based on size between materially identical grains. However, the surface density of trapped electrons, measured independently by thermoluminescence techniques, is orders of magnitude too small to account for the scale of charge transferred. This reveals that trapped electrons are not a necessary ingredient for same-material tribocharging.}, author = {Waitukaitis, Scott R and Lee, Victor and Pierson, James and Forman, Steven and Jaeger, Heinrich}, journal = {APS Physics, Physical Review Letters}, number = {21}, publisher = {American Physical Society}, title = {{Size-dependent same-material tribocharging in insulating grains}}, doi = {10.1103/PhysRevLett.112.218001}, volume = {112}, year = {2014}, } @article{11968, abstract = {Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription.}, author = {Hofbauer, Harald F. and Schopf, Florian H. and Schleifer, Hannes and Knittelfelder, Oskar L. and Pieber, Bartholomäus and Rechberger, Gerald N. and Wolinski, Heimo and Gaspar, Maria L. and Kappe, C. Oliver and Stadlmann, Johannes and Mechtler, Karl and Zenz, Alexandra and Lohner, Karl and Tehlivets, Oksana and Henry, Susan A. and Kohlwein, Sepp D.}, issn = {1878-1551}, journal = {Developmental Cell}, number = {6}, pages = {P729--739}, publisher = {Elsevier}, title = {{Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids}}, doi = {10.1016/j.devcel.2014.04.025}, volume = {29}, year = {2014}, } @article{11967, abstract = {An experimentally easy to perform method for the generation of alumina-supported Fe3O4 nanoparticles [(6±1) nm size, 0.67 wt %]and the use of this material in hydrazine-mediated heterogeneously catalyzed reductions of nitroarenes to anilines under batch and continuous-flow conditions is presented. The bench-stable, reusable nano-Fe3O4@Al2O3 catalyst can selectively reduce functionalized nitroarenes at 1 mol % catalyst loading by using a 20 mol % excess of hydrazine hydrate in an elevated temperature regime (150 °C, reaction time 2–6 min in batch). For continuous-flow processing, the catalyst material is packed into dedicated cartridges and used in a commercially available high-temperature/-pressure flow device. In continuous mode, reaction times can be reduced to less than 1 min at 150 °C (30 bar back pressure) in a highly intensified process. The nano-Fe3O4@Al2O3 catalyst demonstrated stable reduction of nitrobenzene (0.5 M in MeOH) for more than 10 h on stream at a productivity of 30 mmol h−1 (0.72 mol per day). Importantly, virtually no leaching of the catalytically active material could be observed by inductively coupled plasma MS monitoring.}, author = {Moghaddam, Mojtaba Mirhosseini and Pieber, Bartholomäus and Glasnov, Toma and Kappe, C. Oliver}, issn = {1864-564X}, journal = {ChemSusChem}, number = {11}, pages = {3122--3131}, publisher = {Wiley}, title = {{Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow}}, doi = {10.1002/cssc.201402455}, volume = {7}, year = {2014}, } @article{11987, abstract = {A method for the direct lithiation of terminal alkynes and heterocycles with subsequent carboxylation in a continuous flow format was developed. This method provides carboxylic acids at ambient conditions within less than five seconds with only little excess of the organometallic base and CO2.}, author = {Pieber, Bartholomäus and Glasnov, Toma and Kappe, C. O.}, issn = {2046-2069}, journal = {RSC Advances}, number = {26}, publisher = {Royal Society of Chemistry}, title = {{Flash carboxylation: Fast lithiation–carboxylation sequence at room temperature in continuous flow}}, doi = {10.1039/c4ra01442a}, volume = {4}, year = {2014}, } @article{1309, abstract = {We show that weak solutions of the Derrida-Lebowitz-Speer-Spohn (DLSS) equation display infinite speed of support propagation. We apply our method to the case of the quantum drift-diffusion equation which augments the DLSS equation with a drift term and possibly a second-order diffusion term. The proof is accomplished using weighted entropy estimates, Hardy's inequality and a family of singular weight functions to derive a differential inequality; the differential inequality shows exponential growth of the weighted entropy, with the growth constant blowing up very fast as the singularity of the weight becomes sharper. To the best of our knowledge, this is the first example of a nonnegativity-preserving higher-order parabolic equation displaying infinite speed of support propagation.}, author = {Julian Fischer}, journal = {Nonlinear Differential Equations and Applications}, number = {1}, pages = {27 -- 50}, publisher = {Birkhäuser}, title = {{Infinite speed of support propagation for the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models}}, doi = {10.1007/s00030-013-0235-0}, volume = {21}, year = {2014}, } @article{1312, abstract = {We derive upper bounds on the waiting time of solutions to the thin-film equation in the regime of weak slippage n ∈ [2, 32\11). In particular, we give sufficient conditions on the initial data for instantaneous forward motion of the free boundary. For n ∈ (2, 32\11), our estimates are sharp, for n = 2, they are sharp up to a logarithmic correction term. Note that the case n = 2 corresponds-with a grain of salt-to the assumption of the Navier slip condition at the fluid-solid interface. We also obtain results in the regime of strong slippage n ∈ (1,2); however, in this regime we expect them not to be optimal. Our method is based on weighted backward entropy estimates, Hardy's inequality and singular weight functions; we deduce a differential inequality which would enforce blowup of the weighted entropy if the contact line were to remain stationary for too long.}, author = {Julian Fischer}, journal = {Archive for Rational Mechanics and Analysis}, number = {3}, pages = {771 -- 818}, publisher = {Springer}, title = {{Upper bounds on waiting times for the Thin-film equation: The case of weak slippage}}, doi = {10.1007/s00205-013-0690-0}, volume = {211}, year = {2014}, } @article{1375, abstract = {We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1) First we show that the algorithmic question is reducible to the problem of a logarithmic number of min-plus matrix multiplications of n×n-matrices, where n is the number of vertices of the graph. (2) Second, when the weights are nonnegative, we present the first (1+ε)-approximation algorithm for the problem and the running time of our algorithm is Õ(nωlog3(nW/ε)/ε),1 where O(nω) is the time required for the classic n×n-matrix multiplication and W is the maximum value of the weights. With an additional O(log(nW/ε)) factor in space a cycle with approximately optimal weight can be computed within the same time bound.}, author = {Chatterjee, Krishnendu and Henzinger, Monika H and Krinninger, Sebastian and Loitzenbauer, Veronika and Raskin, Michael}, journal = {Theoretical Computer Science}, number = {C}, pages = {104 -- 116}, publisher = {Elsevier}, title = {{Approximating the minimum cycle mean}}, doi = {10.1016/j.tcs.2014.06.031}, volume = {547}, year = {2014}, } @inproceedings{1392, abstract = {Fault-tolerant distributed algorithms play an important role in ensuring the reliability of many software applications. In this paper we consider distributed algorithms whose computations are organized in rounds. To verify the correctness of such algorithms, we reason about (i) properties (such as invariants) of the state, (ii) the transitions controlled by the algorithm, and (iii) the communication graph. We introduce a logic that addresses these points, and contains set comprehensions with cardinality constraints, function symbols to describe the local states of each process, and a limited form of quantifier alternation to express the verification conditions. We show its use in automating the verification of consensus algorithms. In particular, we give a semi-decision procedure for the unsatisfiability problem of the logic and identify a decidable fragment. We successfully applied our framework to verify the correctness of a variety of consensus algorithms tolerant to both benign faults (message loss, process crashes) and value faults (message corruption).}, author = {Dragoi, Cezara and Henzinger, Thomas A and Veith, Helmut and Widder, Josef and Zufferey, Damien}, location = {San Diego, USA}, pages = {161 -- 181}, publisher = {Springer}, title = {{A logic-based framework for verifying consensus algorithms}}, doi = {10.1007/978-3-642-54013-4_10}, volume = {8318}, year = {2014}, } @inproceedings{1393, abstract = {Probabilistic programs are usual functional or imperative programs with two added constructs: (1) the ability to draw values at random from distributions, and (2) the ability to condition values of variables in a program via observations. Models from diverse application areas such as computer vision, coding theory, cryptographic protocols, biology and reliability analysis can be written as probabilistic programs. Probabilistic inference is the problem of computing an explicit representation of the probability distribution implicitly specified by a probabilistic program. Depending on the application, the desired output from inference may vary-we may want to estimate the expected value of some function f with respect to the distribution, or the mode of the distribution, or simply a set of samples drawn from the distribution. In this paper, we describe connections this research area called \Probabilistic Programming" has with programming languages and software engineering, and this includes language design, and the static and dynamic analysis of programs. We survey current state of the art and speculate on promising directions for future research.}, author = {Gordon, Andrew and Henzinger, Thomas A and Nori, Aditya and Rajamani, Sriram}, booktitle = {Proceedings of the on Future of Software Engineering}, location = {Hyderabad, India}, pages = {167 -- 181}, publisher = {ACM}, title = {{Probabilistic programming}}, doi = {10.1145/2593882.2593900}, year = {2014}, } @phdthesis{1404, abstract = {The co-evolution of hosts and pathogens is characterized by continuous adaptations of both parties. Pathogens of social insects need to adapt towards disease defences at two levels: 1) individual immunity of each colony member consisting of behavioural defence strategies as well as humoral and cellular immune responses and 2) social immunity that is collectively performed by all group members comprising behavioural, physiological and organisational defence strategies. To disentangle the selection pressure on pathogens by the collective versus individual level of disease defence in social insects, we performed an evolution experiment using the Argentine Ant, Linepithema humile, as a host and a mixture of the general insect pathogenic fungus Metarhizium spp. (6 strains) as a pathogen. We allowed pathogen evolution over 10 serial host passages to two different evolution host treatments: (1) only individual host immunity in a single host treatment, and (2) simultaneously acting individual and social immunity in a social host treatment, in which an exposed ant was accompanied by two untreated nestmates. Before starting the pathogen evolution experiment, the 6 Metarhizium spp. strains were characterised concerning conidiospore size killing rates in singly and socially reared ants, their competitiveness under coinfecting conditions and their influence on ant behaviour. We analysed how the ancestral atrain mixture changed in conidiospere size, killing rate and strain composition dependent on host treatment (single or social hosts) during 10 passages and found that killing rate and conidiospere size of the pathogen increased under both evolution regimes, but different depending on host treatment. Testing the evolved strain mixtures that evolved under either the single or social host treatment under both single and social current rearing conditions in a full factorial design experiment revealed that the additional collective defences in insect societies add new selection pressure for their coevolving pathogens that compromise their ability to adapt to its host at the group level. To our knowledge, this is the first study directly measuring the influence of social immunity on pathogen evolution.}, author = {Stock, Miriam}, pages = {101}, publisher = {IST Austria}, title = {{Evolution of a fungal pathogen towards individual versus social immunity in ants}}, year = {2014}, } @inproceedings{1516, abstract = {We present a rigorous derivation of the BCS gap equation for superfluid fermionic gases with point interactions. Our starting point is the BCS energy functional, whose minimizer we investigate in the limit when the range of the interaction potential goes to zero. }, author = {Bräunlich, Gerhard and Hainzl, Christian and Seiringer, Robert}, booktitle = {Proceedings of the QMath12 Conference}, location = {Berlin, Germany}, pages = {127 -- 137}, publisher = {World Scientific Publishing}, title = {{On the BCS gap equation for superfluid fermionic gases}}, doi = {10.1142/9789814618144_0007}, year = {2014}, } @article{1629, abstract = {We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations.}, author = {Guerrero, Paul and Jeschke, Stefan and Wimmer, Michael and Wonka, Peter}, journal = {ACM Transactions on Graphics}, number = {2}, publisher = {ACM}, title = {{Edit propagation using geometric relationship functions}}, doi = {10.1145/2591010}, volume = {33}, year = {2014}, } @inproceedings{10793, abstract = {The Hanani–Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this classical result to clustered graphs with two disjoint clusters, and show that a straightforward extension of our result to flat clustered graphs with three or more disjoint clusters is not possible. We also give a new and short proof for a related result by Di Battista and Frati based on the matroid intersection algorithm.}, author = {Fulek, Radoslav and Kynčl, Jan and Malinović, Igor and Pálvölgyi, Dömötör}, booktitle = {International Symposium on Graph Drawing}, issn = {0302-9743}, pages = {428--436}, publisher = {Springer Nature}, title = {{Clustered planarity testing revisited}}, doi = {10.1007/978-3-662-45803-7_36}, volume = {8871}, year = {2014}, } @inproceedings{1643, abstract = {We extend the notion of verifiable random functions (VRF) to constrained VRFs, which generalize the concept of constrained pseudorandom functions, put forward by Boneh and Waters (Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables computation of a non-interactive proof that the function value was computed correctly. In a constrained VRF from the key sk one can derive constrained keys skS for subsets S of the domain, which allow computation of function values and proofs only at points in S. After formally defining constrained VRFs, we derive instantiations from the multilinear-maps-based constrained PRFs by Boneh and Waters, yielding a VRF with constrained keys for any set that can be decided by a polynomial-size circuit. Our VRFs have the same function values as the Boneh-Waters PRFs and are proved secure under the same hardness assumption, showing that verifiability comes at no cost. Constrained (functional) VRFs were stated as an open problem by Boyle et al.}, author = {Fuchsbauer, Georg}, booktitle = {SCN 2014}, editor = {Abdalla, Michel and De Prisco, Roberto}, location = {Amalfi, Italy}, pages = {95 -- 114}, publisher = {Springer}, title = {{Constrained Verifiable Random Functions }}, doi = {10.1007/978-3-319-10879-7_7}, volume = {8642}, year = {2014}, } @inproceedings{1702, abstract = {In this paper we present INTERHORN, a solver for recursion-free Horn clauses. The main application domain of INTERHORN lies in solving interpolation problems arising in software verification. We show how a range of interpolation problems, including path, transition, nested, state/transition and well-founded interpolation can be handled directly by INTERHORN. By detailing these interpolation problems and their Horn clause representations, we hope to encourage the emergence of a common back-end interpolation interface useful for diverse verification tools.}, author = {Gupta, Ashutosh and Popeea, Corneliu and Rybalchenko, Andrey}, booktitle = {Electronic Proceedings in Theoretical Computer Science, EPTCS}, location = {Vienna, Austria}, pages = {31 -- 38}, publisher = {Open Publishing}, title = {{Generalised interpolation by solving recursion free-horn clauses}}, doi = {10.4204/EPTCS.169.5}, volume = {169}, year = {2014}, } @inproceedings{1708, abstract = {It has been long argued that, because of inherent ambiguity and noise, the brain needs to represent uncertainty in the form of probability distributions. The neural encoding of such distributions remains however highly controversial. Here we present a novel circuit model for representing multidimensional real-valued distributions using a spike based spatio-temporal code. Our model combines the computational advantages of the currently competing models for probabilistic codes and exhibits realistic neural responses along a variety of classic measures. Furthermore, the model highlights the challenges associated with interpreting neural activity in relation to behavioral uncertainty and points to alternative population-level approaches for the experimental validation of distributed representations.}, author = {Savin, Cristina and Denève, Sophie}, location = {Montreal, Canada}, number = {January}, pages = {2024 -- 2032}, publisher = {Neural Information Processing Systems}, title = {{Spatio-temporal representations of uncertainty in spiking neural networks}}, volume = {3}, year = {2014}, } @article{1761, abstract = {Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.}, author = {Mongillo, Massimo and Spathis, Panayotis N and Georgios Katsaros and De Franceschi, Silvano and Gentile, Pascal and Rurali, Riccardo and Cartoixà, Xavier}, journal = {Physical Review X}, number = {4}, publisher = {American Physical Society}, title = {{PtSi clustering in silicon probed by transport spectroscopy}}, doi = {10.1103/PhysRevX.3.041025}, volume = {3}, year = {2014}, }