@misc{5443, abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.}, author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica}, issn = {2664-1690}, pages = {23}, publisher = {IST Austria}, title = {{A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs}}, doi = {10.15479/AT:IST-2015-325-v2-1}, year = {2015}, } @article{5804, abstract = {We present here the first integer-based algorithm for constructing a well-defined lattice sphere specified by integer radius and integer center. The algorithm evolves from a unique correspondence between the lattice points comprising the sphere and the distribution of sum of three square numbers in integer intervals. We characterize these intervals to derive a useful set of recurrences, which, in turn, aids in efficient computation. Each point of the lattice sphere is determined by resorting to only a few primitive operations in the integer domain. The symmetry of its quadraginta octants provides an added advantage by confining the computation to its prima quadraginta octant. Detailed theoretical analysis and experimental results have been furnished to demonstrate its simplicity and elegance.}, author = {Biswas, Ranita and Bhowmick, Partha}, issn = {0304-3975}, journal = {Theoretical Computer Science}, number = {4}, pages = {56--72}, publisher = {Elsevier}, title = {{From prima quadraginta octant to lattice sphere through primitive integer operations}}, doi = {10.1016/j.tcs.2015.11.018}, volume = {624}, year = {2015}, } @article{5807, author = {Biswas, Ranita and Bhowmick, Partha}, issn = {0304-3975}, journal = {Theoretical Computer Science}, number = {11}, pages = {146--163}, publisher = {Elsevier}, title = {{On different topological classes of spherical geodesic paths and circles inZ3}}, doi = {10.1016/j.tcs.2015.09.003}, volume = {605}, year = {2015}, } @article{5808, author = {Biswas, Ranita and Bhowmick, Partha}, issn = {0178-2789}, journal = {The Visual Computer}, number = {6-8}, pages = {787--797}, publisher = {Springer Nature}, title = {{Layer the sphere}}, doi = {10.1007/s00371-015-1101-3}, volume = {31}, year = {2015}, } @article{594, abstract = {Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.}, author = {Sainsbury, Sarah and Bernecky, Carrie A and Cramer, Patrick}, journal = {Nature Reviews Molecular Cell Biology}, number = {3}, pages = {129 -- 143}, publisher = {Nature Publishing Group}, title = {{Structural basis of transcription initiation by RNA polymerase II}}, doi = {10.1038/nrm3952}, volume = {16}, year = {2015}, } @inproceedings{1511, abstract = {The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.}, author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, location = {Eindhoven, Netherlands}, pages = {476 -- 490}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result}}, doi = {10.4230/LIPIcs.SOCG.2015.476}, volume = {34 }, year = {2015}, } @article{6118, abstract = {Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.}, author = {Fenk, Lorenz A. and de Bono, Mario}, issn = {0027-8424}, journal = {Proceedings of the National Academy of Sciences}, number = {27}, pages = {E3525--E3534}, publisher = {National Academy of Sciences}, title = {{Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity}}, doi = {10.1073/pnas.1423808112}, volume = {112}, year = {2015}, } @article{6120, abstract = {Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.}, author = {Laurent, Patrick and Soltesz, Zoltan and Nelson, Geoffrey M and Chen, Changchun and Arellano-Carbajal, Fausto and Levy, Emmanuel and de Bono, Mario}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Decoding a neural circuit controlling global animal state in C. elegans}}, doi = {10.7554/elife.04241}, volume = {4}, year = {2015}, } @inproceedings{1637, abstract = {An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P ≠ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in {0, ∞} corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Zivny. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.}, author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal}, location = {Berkeley, CA, United States}, pages = {1246 -- 1258}, publisher = {IEEE}, title = {{The complexity of general-valued CSPs}}, doi = {10.1109/FOCS.2015.80}, year = {2015}, } @article{6507, abstract = {The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.}, author = {Zhou, Long and Hinerman, J. M. and Blaszczyk, M. and Miller, J. L. C. and Conrady, D. G. and Barrow, A. D. and Chirgadze, D. Y. and Bihan, D. and Farndale, R. W. and Herr, A. B.}, issn = {0006-4971}, journal = {Blood}, number = {5}, pages = {529--537}, publisher = {American Society of Hematology}, title = {{Structural basis for collagen recognition by the immune receptor OSCAR}}, doi = {10.1182/blood-2015-08-667055}, volume = {127}, year = {2015}, } @article{6737, abstract = {This paper presents polar coding schemes for the two-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of two-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a superpolynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. To align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and channel outputs. To remove these constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this paper are quite general, and they can be adopted to many other multiterminal scenarios whenever there polar indices need to be aligned.}, author = {Mondelli, Marco and Hassani, Hamed and Sason, Igal and Urbanke, Rudiger}, journal = {IEEE Transactions on Information Theory}, number = {2}, pages = {783--800}, publisher = {IEEE}, title = {{Achieving Marton’s region for broadcast channels using polar codes}}, doi = {10.1109/tit.2014.2368555}, volume = {61}, year = {2015}, } @article{6736, abstract = {Motivated by the significant performance gains which polar codes experience under successive cancellation list decoding, their scaling exponent is studied as a function of the list size. In particular, the error probability is fixed, and the tradeoff between the block length and back-off from capacity is analyzed. A lower bound is provided on the error probability under MAP decoding with list size L for any binary-input memoryless output-symmetric channel and for any class of linear codes such that their minimum distance is unbounded as the block length grows large. Then, it is shown that under MAP decoding, although the introduction of a list can significantly improve the involved constants, the scaling exponent itself, i.e., the speed at which capacity is approached, stays unaffected for any finite list size. In particular, this result applies to polar codes, since their minimum distance tends to infinity as the block length increases. A similar result is proved for genie-aided successive cancellation decoding when transmission takes place over the binary erasure channel, namely, the scaling exponent remains constant for any fixed number of helps from the genie. Note that since genie-aided successive cancellation decoding might be strictly worse than successive cancellation list decoding, the problem of establishing the scaling exponent of the latter remains open.}, author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger}, journal = {IEEE Transactions on Information Theory}, number = {9}, pages = {4838--4851}, publisher = {IEEE}, title = {{Scaling exponent of list decoders with applications to polar codes}}, doi = {10.1109/tit.2015.2453315}, volume = {61}, year = {2015}, } @article{7070, abstract = {Torque magnetization measurements on YBa2Cu3Oy (YBCO) at doping y=6.67 (p=0.12), in dc fields (B) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field Hirr(T=0)≈24 T. The differential susceptibility dM/dB, however, is more rapidly suppressed for B≳16 T than expected from the properties of the low field superconducting state, and saturates at a low value for fields B≳24 T. In addition, torque measurements on a p=0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behavior, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with charge-density-wave (CDW) order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes dM/dB to saturate at high field. The diamagnetic signal observed above 50 T for the p=0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger three-dimensional ordered CDW.}, author = {Yu, Jing Fei and Ramshaw, B. J. and Kokanović, I. and Modic, Kimberly A and Harrison, N. and Day, James and Liang, Ruixing and Hardy, W. N. and Bonn, D. A. and McCollam, A. and Julian, S. R. and Cooper, J. R.}, issn = {1098-0121}, journal = {Physical Review B}, number = {18}, publisher = {APS}, title = {{Magnetization of underdoped YBa2Cu3Oy above the irreversibility field}}, doi = {10.1103/physrevb.92.180509}, volume = {92}, year = {2015}, } @article{7456, abstract = {The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux–von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.}, author = {Caruntu, Daniela and Rostamzadeh, Taha and Costanzo, Tommaso and Salemizadeh Parizi, Saman and Caruntu, Gabriel}, issn = {2040-3364}, journal = {Nanoscale}, number = {30}, pages = {12955--12969}, publisher = {RSC}, title = {{Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals}}, doi = {10.1039/c5nr00737b}, volume = {7}, year = {2015}, } @article{7457, abstract = {A new organic–inorganic ferroelectric hybrid capacitor designed by uniformly incorporating surface modified monodisperse 15 nm ferroelectric BaTiO3 nanocubes into non-polar polymer blends of poly(methyl methacrylate) (PMMA) polymer and acrylonitrile-butadiene-styrene (ABS) terpolymer is described. The investigation of spatial distribution of nanofillers via a non-distractive thermal pulse method illustrates that the surface functionalization of nanocubes plays a key role in the uniform distribution of charge polarization within the polymer matrix. The discharged energy density of the nanocomposite with 30 vol% BaTiO3 nanocubes is ∼44 × 10−3 J cm−3, which is almost six times higher than that of the neat polymer. The facile processing, along with the superior mechanical and electrical properties of the BaTiO3/PMMA–ABS nanocomposites make them suitable for implementation into capacitive electrical energy storage devices.}, author = {Parizi, Saman Salemizadeh and Conley, Gavin and Costanzo, Tommaso and Howell, Bob and Mellinger, Axel and Caruntu, Gabriel}, issn = {2046-2069}, journal = {RSC Advances}, number = {93}, pages = {76356--76362}, publisher = {RSC}, title = {{Fabrication of barium titanate/acrylonitrile-butadiene styrene/poly(methyl methacrylate) nanocomposite films for hybrid ferroelectric capacitors}}, doi = {10.1039/c5ra11347d}, volume = {5}, year = {2015}, } @article{7742, abstract = {Across-nation differences in the mean values for complex traits are common1,2,3,4,5,6,7,8, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10−8; BMI, P < 5.95 × 10−4), and we find an among-population genetic correlation for tall and slender individuals (r = −0.80, 95% CI = −0.95, −0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).}, author = {Robinson, Matthew Richard and Hemani, Gibran and Medina-Gomez, Carolina and Mezzavilla, Massimo and Esko, Tonu and Shakhbazov, Konstantin and Powell, Joseph E and Vinkhuyzen, Anna and Berndt, Sonja I and Gustafsson, Stefan and Justice, Anne E and Kahali, Bratati and Locke, Adam E and Pers, Tune H and Vedantam, Sailaja and Wood, Andrew R and van Rheenen, Wouter and Andreassen, Ole A and Gasparini, Paolo and Metspalu, Andres and Berg, Leonard H van den and Veldink, Jan H and Rivadeneira, Fernando and Werge, Thomas M and Abecasis, Goncalo R and Boomsma, Dorret I and Chasman, Daniel I and de Geus, Eco J C and Frayling, Timothy M and Hirschhorn, Joel N and Hottenga, Jouke Jan and Ingelsson, Erik and Loos, Ruth J F and Magnusson, Patrik K E and Martin, Nicholas G and Montgomery, Grant W and North, Kari E and Pedersen, Nancy L and Spector, Timothy D and Speliotes, Elizabeth K and Goddard, Michael E and Yang, Jian and Visscher, Peter M}, issn = {1061-4036}, journal = {Nature Genetics}, number = {11}, pages = {1357--1362}, publisher = {Springer Nature}, title = {{Population genetic differentiation of height and body mass index across Europe}}, doi = {10.1038/ng.3401}, volume = {47}, year = {2015}, } @article{7741, abstract = {Phenotypes expressed in a social context are not only a function of the individual, but can also be shaped by the phenotypes of social partners. These social effects may play a major role in the evolution of cooperative breeding if social partners differ in the quality of care they provide and if individual carers adjust their effort in relation to that of other carers. When applying social effects models to wild study systems, it is also important to explore sources of individual plasticity that could masquerade as social effects. We studied offspring provisioning rates of parents and helpers in a wild population of long-tailed tits Aegithalos caudatus using a quantitative genetic framework to identify these social effects and partition them into genetic, permanent environment and current environment components. Controlling for other effects, individuals were consistent in their provisioning effort at a given nest, but adjusted their effort based on who was in their social group, indicating the presence of social effects. However, these social effects differed between years and social contexts, indicating a current environment effect, rather than indicating a genetic or permanent environment effect. While this study reveals the importance of examining environmental and genetic sources of social effects, the framework we present is entirely general, enabling a greater understanding of potentially important social effects within any ecological population.}, author = {Adams, Mark James and Robinson, Matthew Richard and Mannarelli, Maria-Elena and Hatchwell, Ben J.}, issn = {0962-8452}, journal = {Proceedings of the Royal Society B: Biological Sciences}, number = {1810}, publisher = {The Royal Society}, title = {{Social genetic and social environment effects on parental and helper care in a cooperatively breeding bird}}, doi = {10.1098/rspb.2015.0689}, volume = {282}, year = {2015}, } @article{7739, abstract = {Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.}, author = {Santure, Anna W. and Poissant, Jocelyn and De Cauwer, Isabelle and van Oers, Kees and Robinson, Matthew Richard and Quinn, John L. and Groenen, Martien A. M. and Visser, Marcel E. and Sheldon, Ben C. and Slate, Jon}, issn = {0962-1083}, journal = {Molecular Ecology}, pages = {6148--6162}, publisher = {Wiley}, title = {{Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations}}, doi = {10.1111/mec.13452}, volume = {24}, year = {2015}, } @inproceedings{776, abstract = {High-performance concurrent priority queues are essential for applications such as task scheduling and discrete event simulation. Unfortunately, even the best performing implementations do not scale past a number of threads in the single digits. This is because of the sequential bottleneck in accessing the elements at the head of the queue in order to perform a DeleteMin operation. In this paper, we present the SprayList, a scalable priority queue with relaxed ordering semantics. Starting from a non-blocking SkipList, the main innovation behind our design is that the DeleteMin operations avoid a sequential bottleneck by "spraying" themselves onto the head of the SkipList list in a coordinated fashion. The spraying is implemented using a carefully designed random walk, so that DeleteMin returns an element among the first O(plog3p) in the list, with high probability, where p is the number of threads. We prove that the running time of a DeleteMin operation is O(log3p), with high probability, independent of the size of the list. Our experiments show that the relaxed semantics allow the data structure to scale for high thread counts, comparable to a classic unordered SkipList. Furthermore, we observe that, for reasonably parallel workloads, the scalability benefits of relaxation considerably outweigh the additional work due to out-of-order execution.}, author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Li, Jerry and Shavit, Nir}, pages = {11 -- 20}, publisher = {ACM}, title = {{The SprayList: A scalable relaxed priority queue}}, doi = {10.1145/2688500.2688523}, volume = {2015-January}, year = {2015}, } @article{7765, abstract = {We introduce a principle unique to disordered solids wherein the contribution of any bond to one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the contributions of different bonds, this “independent bond-level response” paves the way for the design of real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global perturbations: compression and shear. By applying a bond removal procedure that is both simple and experimentally relevant to remove a very small fraction of bonds, we can drive disordered spring networks to both the incompressible and completely auxetic limits of mechanical behavior.}, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {22}, publisher = {American Physical Society}, title = {{The principle of independent bond-level response: Tuning by pruning to exploit disorder for global behavior}}, doi = {10.1103/physrevlett.114.225501}, volume = {114}, year = {2015}, }