@inproceedings{776, abstract = {High-performance concurrent priority queues are essential for applications such as task scheduling and discrete event simulation. Unfortunately, even the best performing implementations do not scale past a number of threads in the single digits. This is because of the sequential bottleneck in accessing the elements at the head of the queue in order to perform a DeleteMin operation. In this paper, we present the SprayList, a scalable priority queue with relaxed ordering semantics. Starting from a non-blocking SkipList, the main innovation behind our design is that the DeleteMin operations avoid a sequential bottleneck by "spraying" themselves onto the head of the SkipList list in a coordinated fashion. The spraying is implemented using a carefully designed random walk, so that DeleteMin returns an element among the first O(plog3p) in the list, with high probability, where p is the number of threads. We prove that the running time of a DeleteMin operation is O(log3p), with high probability, independent of the size of the list. Our experiments show that the relaxed semantics allow the data structure to scale for high thread counts, comparable to a classic unordered SkipList. Furthermore, we observe that, for reasonably parallel workloads, the scalability benefits of relaxation considerably outweigh the additional work due to out-of-order execution.}, author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Li, Jerry and Shavit, Nir}, pages = {11 -- 20}, publisher = {ACM}, title = {{The SprayList: A scalable relaxed priority queue}}, doi = {10.1145/2688500.2688523}, volume = {2015-January}, year = {2015}, } @article{7765, abstract = {We introduce a principle unique to disordered solids wherein the contribution of any bond to one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the contributions of different bonds, this “independent bond-level response” paves the way for the design of real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global perturbations: compression and shear. By applying a bond removal procedure that is both simple and experimentally relevant to remove a very small fraction of bonds, we can drive disordered spring networks to both the incompressible and completely auxetic limits of mechanical behavior.}, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {22}, publisher = {American Physical Society}, title = {{The principle of independent bond-level response: Tuning by pruning to exploit disorder for global behavior}}, doi = {10.1103/physrevlett.114.225501}, volume = {114}, year = {2015}, } @article{7767, abstract = {We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.}, author = {van Drongelen, Ruben and Pal, Anshuman and Goodrich, Carl Peter and Idema, Timon}, issn = {1539-3755}, journal = {Physical Review E}, number = {3}, publisher = {American Physical Society}, title = {{Collective dynamics of soft active particles}}, doi = {10.1103/physreve.91.032706}, volume = {91}, year = {2015}, } @article{7766, abstract = {We study the vibrational properties near a free surface of disordered spring networks derived from jammed sphere packings. In bulk systems, without surfaces, it is well understood that such systems have a plateau in the density of vibrational modes extending down to a frequency scale ω*. This frequency is controlled by ΔZ = 〈Z〉 − 2d, the difference between the average coordination of the spheres and twice the spatial dimension, d, of the system, which vanishes at the jamming transition. In the presence of a free surface we find that there is a density of disordered vibrational modes associated with the surface that extends far below ω*. The total number of these low-frequency surface modes is controlled by ΔZ, and the profile of their decay into the bulk has two characteristic length scales, which diverge as ΔZ−1/2 and ΔZ−1 as the jamming transition is approached.}, author = {Sussman, Daniel M. and Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {1744-683X}, journal = {Soft Matter}, number = {14}, pages = {2745--2751}, publisher = {Royal Society of Chemistry}, title = {{Disordered surface vibrations in jammed sphere packings}}, doi = {10.1039/c4sm02905d}, volume = {11}, year = {2015}, } @inproceedings{777, abstract = {In many applications, the data is of rich structure that can be represented by a hypergraph, where the data items are represented by vertices and the associations among items are represented by hyperedges. Equivalently, we are given an input bipartite graph with two types of vertices: items, and associations (which we refer to as topics). We consider the problem of partitioning the set of items into a given number of components such that the maximum number of topics covered by a component is minimized. This is a clustering problem with various applications, e.g. partitioning of a set of information objects such as documents, images, and videos, and load balancing in the context of modern computation platforms.Inthis paper, we focus on the streaming computation model for this problem, in which items arrive online one at a time and each item must be assigned irrevocably to a component at its arrival time. Motivated by scalability requirements, we focus on the class of streaming computation algorithms with memory limited to be at most linear in the number of components. We show that a greedy assignment strategy is able to recover a hidden co-clustering of items under a natural set of recovery conditions. We also report results of an extensive empirical evaluation, which demonstrate that this greedy strategy yields superior performance when compared with alternative approaches.}, author = {Alistarh, Dan-Adrian and Iglesias, Jennifer and Vojnović, Milan}, pages = {1900 -- 1908}, publisher = {Neural Information Processing Systems}, title = {{Streaming min-max hypergraph partitioning}}, volume = {2015-January}, year = {2015}, } @inproceedings{778, abstract = {Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the costs of providing concurrency between hardware and software transactions in HyTM are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses. The model allows us to formally quantify and analyze the amount of overhead (instrumentation) caused by the potential presence of software transactions.We prove that (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for very weak progress guarantees, and (2) the instrumentation cost incurred by a hardware transaction in any progressive opaque HyTM is linear in the size of the transaction’s data set.We further describe two implementations which exhibit optimal instrumentation costs for two different progress conditions. In sum, this paper proposes the first formal HyTM model and captures for the first time the trade-off between the degree of hardware-software TM concurrency and the amount of instrumentation overhead.}, author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Kuznetsov, Petr and Ravi, Srivatsan and Shavit, Nir}, pages = {185 -- 199}, publisher = {Springer}, title = {{Inherent limitations of hybrid transactional memory}}, doi = {10.1007/978-3-662-48653-5_13}, volume = {9363}, year = {2015}, } @unpublished{7779, abstract = {The fact that a disordered material is not constrained in its properties in the same way as a crystal presents significant and yet largely untapped potential for novel material design. However, unlike their crystalline counterparts, disordered solids are not well understood. One of the primary obstacles is the lack of a theoretical framework for thinking about disorder and its relation to mechanical properties. To this end, we study an idealized system of frictionless athermal soft spheres that, when compressed, undergoes a jamming phase transition with diverging length scales and clean power-law signatures. This critical point is the cornerstone of a much larger "jamming scenario" that has the potential to provide the essential theoretical foundation necessary for a unified understanding of the mechanics of disordered solids. We begin by showing that jammed sphere packings have a valid linear regime despite the presence of "contact nonlinearities." We then investigate the critical nature of the transition, focusing on diverging length scales and finite-size effects. Next, we argue that jamming plays the same role for disordered solids as the perfect crystal plays for crystalline solids. Not only can it be considered an idealized starting point for understanding disordered materials, but it can even influence systems that have a relatively high amount of crystalline order. The behavior of solids can thus be thought of as existing on a spectrum, with the perfect crystal and the jamming transition at opposing ends. Finally, we introduce a new principle wherein the contribution of an individual bond to one global property is independent of its contribution to another. This principle allows the different global responses of a disordered system to be manipulated independently and provides a great deal of flexibility in designing materials with unique, textured and tunable properties.}, author = {Goodrich, Carl Peter}, booktitle = {arXiv:1510.08820}, pages = {242}, title = {{Unearthing the anticrystal: Criticality in the linear response of disordered solids}}, year = {2015}, } @inproceedings{779, abstract = {The concurrent memory reclamation problem is that of devising a way for a deallocating thread to verify that no other concurrent threads hold references to a memory block being deallocated. To date, in the absence of automatic garbage collection, there is no satisfactory solution to this problem; existing tracking methods like hazard pointers, reference counters, or epoch-based techniques like RCU, are either prohibitively expensive or require significant programming expertise, to the extent that implementing them efficiently can be worthy of a publication. None of the existing techniques are automatic or even semi-automated. In this paper, we take a new approach to concurrent memory reclamation: instead of manually tracking access to memory locations as done in techniques like hazard pointers, or restricting shared accesses to specific epoch boundaries as in RCU, our algorithm, called ThreadScan, leverages operating system signaling to automatically detect which memory locations are being accessed by concurrent threads. Initial empirical evidence shows that ThreadScan scales surprisingly well and requires negligible programming effort beyond the standard use of Malloc and Free.}, author = {Alistarh, Dan-Adrian and Matveev, Alexander and Leiserson, William and Shavit, Nir}, pages = {123 -- 132}, publisher = {ACM}, title = {{ThreadScan: Automatic and scalable memory reclamation}}, doi = {10.1145/2755573.2755600}, volume = {2015-June}, year = {2015}, } @inproceedings{780, abstract = {Population protocols are networks of finite-state agents, interacting randomly, and updating their states using simple rules. Despite their extreme simplicity, these systems have been shown to cooperatively perform complex computational tasks, such as simulating register machines to compute standard arithmetic functions. The election of a unique leader agent is a key requirement in such computational constructions. Yet, the fastest currently known population protocol for electing a leader only has linear convergence time, and it has recently been shown that no population protocol using a constant number of states per node may overcome this linear bound. In this paper, we give the first population protocol for leader election with polylogarithmic convergence time, using polylogarithmic memory states per node. The protocol structure is quite simple: each node has an associated value, and is either a leader (still in contention) or a minion (following some leader). A leader keeps incrementing its value and “defeats” other leaders in one-to-one interactions, and will drop from contention and become a minion if it meets a leader with higher value. Importantly, a leader also drops out if it meets a minion with higher absolute value. While these rules are quite simple, the proof that this algorithm achieves polylogarithmic convergence time is non-trivial. In particular, the argument combines careful use of concentration inequalities with anti-concentration bounds, showing that the leaders’ values become spread apart as the execution progresses, which in turn implies that straggling leaders get quickly eliminated. We complement our analysis with empirical results, showing that our protocol converges extremely fast, even for large network sizes.}, author = {Alistarh, Dan-Adrian and Gelashvili, Rati}, pages = {479 -- 491}, publisher = {Springer}, title = {{Polylogarithmic-time leader election in population protocols}}, doi = {10.1007/978-3-662-47666-6_38}, volume = {9135}, year = {2015}, } @inproceedings{781, abstract = {Population protocols, roughly defined as systems consisting of large numbers of simple identical agents, interacting at random and updating their state following simple rules, are an important research topic at the intersection of distributed computing and biology. One of the fundamental tasks that a population protocol may solve is majority: each node starts in one of two states; the goal is for all nodes to reach a correct consensus on which of the two states was initially the majority. Despite considerable research effort, known protocols for this problem are either exact but slow (taking linear parallel time to converge), or fast but approximate (with non-zero probability of error). In this paper, we show that this trade-off between preciasion and speed is not inherent. We present a new protocol called Average and Conquer (AVC) that solves majority ex-actly in expected parallel convergence time O(log n/(sε) + log n log s), where n is the number of nodes, εn is the initial node advantage of the majority state, and s = Ω(log n log log n) is the number of states the protocol employs. This shows that the majority problem can be solved exactly in time poly-logarithmic in n, provided that the memory per node is s = Ω(1/ε + lognlog1/ε). On the negative side, we establish a lower bound of Ω(1/ε) on the expected paraallel convergence time for the case of four memory states per node, and a lower bound of Ω(logn) parallel time for protocols using any number of memory states per node.per node, and a lower bound of (log n) parallel time for protocols using any number of memory states per node.}, author = {Alistarh, Dan-Adrian and Gelashvili, Rati and Vojnović, Milan}, pages = {47 -- 56}, publisher = {ACM}, title = {{Fast and exact majority in population protocols}}, doi = {10.1145/2767386.2767429}, volume = {2015-July}, year = {2015}, } @inproceedings{782, abstract = {In this work, we consider the following random process, mo- Tivated by the analysis of lock-free concurrent algorithms under high memory contention. In each round, a new scheduling step is allocated to one of n threads, according to a distribution p = (p1; p2; : : : ; pn), where thread i is scheduled with probability pi. When some thread first reaches a set threshold of executed steps, it registers a win, completing its current operation, and resets its step count to 1. At the same time, threads whose step count was close to the threshold also get reset because of the win, but to 0 steps, being penalized for almost winning. We are interested in two questions: how often does some thread complete an operation (system latency), and how often does a specific thread complete an operation (individual latency)? We provide asymptotically tight bounds for the system and individual latency of this general concurrency pattern, for arbitrary scheduling distributions p. Surprisingly, a sim- ple characterization exists: in expectation, the system will complete a new operation every Θ(1/p 2) steps, while thread i will complete a new operation every Θ(1/2=p i ) steps. The proof is interesting in its own right, as it requires a careful analysis of how the higher norms of the vector p inuence the thread step counts and latencies in this random process. Our result offers a simple connection between the scheduling distribution and the average performance of concurrent algorithms, which has several applications.}, author = {Alistarh, Dan-Adrian and Sauerwald, Thomas and Vojnović, Milan}, pages = {251 -- 260}, publisher = {ACM}, title = {{Lock-Free algorithms under stochastic schedulers}}, doi = {10.1145/2767386.2767430}, volume = {2015-July}, year = {2015}, } @inproceedings{783, abstract = {The problem of electing a leader from among n contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given n processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a Θ(log n)-time tournament, against a strong adaptive adversary? In this paper, we answer this question in the affirmative, improving on a decades-old upper bound. We introduce two new algorithmic ideas to reduce the time complexity of electing a leader to O(log∗ n), using O(n2) point-to-point messages. A non-trivial application of our algorithm is a new upper bound for the tight renaming problem, assigning n items to the n participants in expected O(log2 n) time and O(n2) messages. We complement our results with lower bound of Ω(n2) messages for solving these two problems, closing the question of their message complexity.}, author = {Alistarh, Dan-Adrian and Gelashvili, Rati and Vladu, Adrian}, pages = {365 -- 374}, publisher = {ACM}, title = {{How to elect a leader faster than a tournament}}, doi = {10.1145/2767386.2767420}, volume = {2015-July}, year = {2015}, } @inproceedings{784, abstract = {We demonstrate an optical switch design that can scale up to a thousand ports with high per-port bandwidth (25 Gbps+) and low switching latency (40 ns). Our design uses a broadcast and select architecture, based on a passive star coupler and fast tunable transceivers. In addition we employ time division multiplexing to achieve very low switching latency. Our demo shows the feasibility of the switch data plane using a small testbed, comprising two transmitters and a receiver, connected through a star coupler.}, author = {Alistarh, Dan-Adrian and Ballani, Hitesh and Costa, Paolo and Funnell, Adam and Benjamin, Joshua and Watts, Philip and Thomsen, Benn}, isbn = {978-1-4503-3542-3}, location = {London, United Kindgdom}, pages = {367 -- 368}, publisher = {ACM}, title = {{A high-radix, low-latency optical switch for data centers}}, doi = {10.1145/2785956.2790035}, year = {2015}, } @article{802, abstract = {Glycoinositolphosphoceramides (GIPCs) are complex sphingolipids present at the plasma membrane of various eukaryotes with the important exception of mammals. In fungi, these glycosphingolipids commonly contain an alpha-mannose residue (Man) linked at position 2 of the inositol. However, several pathogenic fungi additionally synthesize zwitterionic GIPCs carrying an alpha-glucosamine residue (GlcN) at this position. In the human pathogen Aspergillus fumigatus, the GlcNalpha1,2IPC core (where IPC is inositolphosphoceramide) is elongated to Manalpha1,3Manalpha1,6GlcNalpha1,2IPC, which is the most abundant GIPC synthesized by this fungus. In this study, we identified an A. fumigatus N-acetylglucosaminyltransferase, named GntA, and demonstrate its involvement in the initiation of zwitterionic GIPC biosynthesis. Targeted deletion of the gene encoding GntA in A. fumigatus resulted in complete absence of zwitterionic GIPC; a phenotype that could be reverted by episomal expression of GntA in the mutant. The N-acetylhexosaminyltransferase activity of GntA was substantiated by production of N-acetylhexosamine-IPC in the yeast Saccharomyces cerevisiae upon GntA expression. Using an in vitro assay, GntA was furthermore shown to use UDP-N-acetylglucosamine as donor substrate to generate a glycolipid product resistant to saponification and to digestion by phosphatidylinositol-phospholipase C as expected for GlcNAcalpha1,2IPC. Finally, as the enzymes involved in mannosylation of IPC, GntA was localized to the Golgi apparatus, the site of IPC synthesis.}, author = {Engel, Jakob and Schmalhorst, Philipp S and Kruger, Anke and Muller, Christina and Buettner, Falk and Routier, Françoise}, journal = {Glycobiology}, number = {12}, pages = {1423 -- 1430}, publisher = {Oxford University Press}, title = {{Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis}}, doi = {10.1093/glycob/cwv059}, volume = {25}, year = {2015}, } @article{815, abstract = {The polyprotein Gag is the primary structural component of retroviruses. Gag consists of independently folded domains connected by flexible linkers. Interactions between the conserved capsid (CA) domains of Gag mediate formation of hexameric protein lattices that drive assembly of immature virus particles. Proteolytic cleavage of Gag by the viral protease (PR) is required for maturation of retroviruses from an immature form into an infectious form. Within the assembled Gag lattices of HIV-1 and Mason- Pfizer monkey virus (M-PMV), the C-terminal domain of CA adopts similar quaternary arrangements, while the N-terminal domain of CA is packed in very different manners. Here, we have used cryo-electron tomography and subtomogram averaging to study in vitro-assembled, immature virus-like Rous sarcoma virus (RSV) Gag particles and have determined the structure of CA and the surrounding regions to a resolution of ~8 Å. We found that the C-terminal domain of RSV CA is arranged similarly to HIV-1 and M-PMV, whereas the N-terminal domain of CA adopts a novel arrangement in which the upstream p10 domain folds back into the CA lattice. In this position the cleavage site between CA and p10 appears to be inaccessible to PR. Below CA, an extended density is consistent with the presence of a six-helix bundle formed by the spacer-peptide region. We have also assessed the affect of lattice assembly on proteolytic processing by exogenous PR. The cleavage between p10 and CA is indeed inhibited in the assembled lattice, a finding consistent with structural regulation of proteolytic maturation. }, author = {Schur, Florian and Dick, Robert and Hagen, Wim and Vogt, Volker and Briggs, John}, journal = {Journal of Virology}, number = {20}, pages = {10294 -- 10302}, publisher = {ASM}, title = {{The structure of immature virus like Rous sarcoma virus gag particles reveals a structural role for the p10 domain in assembly}}, doi = {10.1128/JVI.01502-15}, volume = {89}, year = {2015}, } @article{814, abstract = {Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.}, author = {Florian Schur and Hagen, Wim J and Rumlová, Michaela and Ruml, Tomáš and Müller B and Kraüsslich, Hans Georg and Briggs, John A}, journal = {Nature}, number = {7535}, pages = {505 -- 508}, publisher = {Nature Publishing Group}, title = {{Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution}}, doi = {10.1038/nature13838}, volume = {517}, year = {2015}, } @article{8242, author = {Einhorn, Lukas and Fazekas, Judit and Muhr, Martina and Schoos, Alexandra and Oida, Kumiko and Singer, Josef and Panakova, Lucia and Manzano-Szalai, Krisztina and Jensen-Jarolim, Erika}, issn = {0091-6749}, journal = {Journal of Allergy and Clinical Immunology}, number = {2}, publisher = {Elsevier}, title = {{Generation of recombinant FcεRIα of dog, cat and horse for component-resolved allergy diagnosis in veterinary patients}}, doi = {10.1016/j.jaci.2014.12.1263}, volume = {135}, year = {2015}, } @article{832, abstract = {Plants maintain capacity to form new organs such as leaves, flowers, lateral shoots and roots throughout their postembryonic lifetime. Lateral roots (LRs) originate from a few pericycle cells that acquire attributes of founder cells (FCs), undergo series of anticlinal divisions, and give rise to a few short initial cells. After initiation, coordinated cell division and differentiation occur, giving rise to lateral root primordia (LRP). Primordia continue to grow, emerge through the cortex and epidermal layers of the primary root, and finally a new apical meristem is established taking over the responsibility for growth of mature lateral roots [for detailed description of the individual stages of lateral root organogenesis see Malamy and Benfey (1997)]. To examine this highly dynamic developmental process and to investigate a role of various hormonal, genetic and environmental factors in the regulation of lateral root organogenesis, the real time imaging based analyses represent extremely powerful tools (Laskowski et al., 2008; De Smet et al., 2012; Marhavy et al., 2013 and 2014). Herein, we describe a protocol for real time lateral root primordia (LRP) analysis, which enables the monitoring of an onset of the specific gene expression and subcellular protein localization during primordia organogenesis, as well as the evaluation of the impact of genetic and environmental perturbations on LRP organogenesis.}, author = {Peter Marhavy and Eva Benková}, journal = {Bio-protocol}, number = {8}, publisher = {Bio-protocol LLC}, title = {{Real time analysis of lateral root organogenesis in arabidopsis}}, doi = {10.21769/BioProtoc.1446}, volume = {5}, year = {2015}, } @article{8456, abstract = {The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall ‘rocking’ motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1–100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.}, author = {Ma, Peixiang and Xue, Yi and Coquelle, Nicolas and Haller, Jens D. and Yuwen, Tairan and Ayala, Isabel and Mikhailovskii, Oleg and Willbold, Dieter and Colletier, Jacques-Philippe and Skrynnikov, Nikolai R. and Schanda, Paul}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Observing the overall rocking motion of a protein in a crystal}}, doi = {10.1038/ncomms9361}, volume = {6}, year = {2015}, } @article{8457, abstract = {We review recent advances in methodologies to study microseconds‐to‐milliseconds exchange processes in biological molecules using magic‐angle spinning solid‐state nuclear magnetic resonance (MAS ssNMR) spectroscopy. The particularities of MAS ssNMR, as compared to solution‐state NMR, are elucidated using numerical simulations and experimental data. These simulations reveal the potential of MAS NMR to provide detailed insight into short‐lived conformations of biological molecules. Recent studies of conformational exchange dynamics in microcrystalline ubiquitin are discussed.}, author = {Ma, Peixiang and Schanda, Paul}, isbn = {9780470034590}, journal = {eMagRes}, number = {3}, pages = {699--708}, publisher = {Wiley}, title = {{Conformational exchange processes in biological systems: Detection by solid-state NMR}}, doi = {10.1002/9780470034590.emrstm1418}, volume = {4}, year = {2015}, }