@misc{9783, abstract = {Predicted frameshift and nonsense mutations in Chlamydial pan-genome. For the analysis of putative pseudogenes, events located less than 60 bp. away from gene end or present in a single genome from the corresponding OG were excluded. (CSV 600 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808760.v1}, year = {2019}, } @misc{9897, abstract = {Frameshift and nonsense mutations near homopolymeric tracts of OG1 genes. Only 374 genes with typical length and domain composition were considered. (CSV 6 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808850.v1}, year = {2019}, } @misc{9890, abstract = {Distribution of OGs with mosaic phyletic patterns across species (complete genomes only). (CSV 7 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808802.v1}, year = {2019}, } @misc{9892, abstract = {Distribution of OGs with mosaic phyletic patterns across species (all genomes). (CSV 10 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808814.v1}, year = {2019}, } @misc{9893, abstract = {Summary of peripheral genesa phyletic patterns and tree concordance. (CSV 26 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808820.v1}, year = {2019}, } @misc{9894, abstract = {Orthologous families (OFs) derived by MCL clustering of OGs. (CSV 189 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808826.v1}, year = {2019}, } @misc{9895, abstract = {Additional information on proteins from OG1. (CSV 30 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808835.v1}, year = {2019}, } @misc{9896, abstract = {Summary of the analysed genomes. (CSV 24 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808841.v1}, year = {2019}, } @article{6899, abstract = {Intra-organ communication guides morphogenetic processes that are essential for an organ to carry out complex physiological functions. In the heart, the growth of the myocardium is tightly coupled to that of the endocardium, a specialized endothelial tissue that lines its interior. Several molecular pathways have been implicated in the communication between these tissues including secreted factors, components of the extracellular matrix, or proteins involved in cell-cell communication. Yet, it is unknown how the growth of the endocardium is coordinated with that of the myocardium. Here, we show that an increased expansion of the myocardial atrial chamber volume generates higher junctional forces within endocardial cells. This leads to biomechanical signaling involving VE-cadherin, triggering nuclear localization of the Hippo pathway transcriptional regulator Yap1 and endocardial proliferation. Our work suggests that the growth of the endocardium results from myocardial chamber volume expansion and ends when the tension on the tissue is relaxed.}, author = {Bornhorst, Dorothee and Xia, Peng and Nakajima, Hiroyuki and Dingare, Chaitanya and Herzog, Wiebke and Lecaudey, Virginie and Mochizuki, Naoki and Heisenberg, Carl-Philipp J and Yelon, Deborah and Abdelilah-Seyfried, Salim}, issn = {20411723}, journal = {Nature communications}, number = {1}, pages = {4113}, publisher = {Nature Publishing Group}, title = {{Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions}}, doi = {10.1038/s41467-019-12068-x}, volume = {10}, year = {2019}, } @article{6898, abstract = {Background Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. Results We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. Conclusions This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, issn = {14712164}, journal = {BMC Genomics}, number = {1}, publisher = {BioMed Central}, title = {{Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.1186/s12864-019-6059-5}, volume = {20}, year = {2019}, } @article{6920, author = {Artner, Christina and Benková, Eva}, issn = {1674-2052}, journal = {Molecular Plant}, number = {10}, pages = {1312--1314}, publisher = {Cell Press}, title = {{Ethylene and cytokinin - partners in root growth regulation}}, doi = {10.1016/j.molp.2019.09.003}, volume = {12}, year = {2019}, } @misc{9898, abstract = {All polyN tracts of length 5 or more nucleotides in sequences of genes from OG1. Sequences were extracted and scanned prior to automatic correction for frameshifts implemented in the RAST pipeline. (CSV 133 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808859.v1}, year = {2019}, } @misc{9901, abstract = {Clusters of Orthologous Genes (COGs) and corresponding functional categories assigned to OGs. (CSV 117 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808907.v1}, year = {2019}, } @misc{9899, abstract = {Summary of orthologous groups (OGs) for 227 genomes of genus Chlamydia. (CSV 362 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808865.v1}, year = {2019}, } @misc{9900, abstract = {Pan-genome statistics by species. (CSV 3 kb)}, author = {Sigalova, Olga M. and Chaplin, Andrei V. and Bochkareva, Olga and Shelyakin, Pavel V. and Filaretov, Vsevolod A. and Akkuratov, Evgeny E. and Burskaia, Valentina and Gelfand, Mikhail S.}, publisher = {Springer Nature}, title = {{Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction}}, doi = {10.6084/m9.figshare.9808886.v1}, year = {2019}, } @article{6936, abstract = {A key challenge for community ecology is to understand to what extent observational data can be used to infer the underlying community assembly processes. As different processes can lead to similar or even identical patterns, statistical analyses of non‐manipulative observational data never yield undisputable causal inference on the underlying processes. Still, most empirical studies in community ecology are based on observational data, and hence understanding under which circumstances such data can shed light on assembly processes is a central concern for community ecologists. We simulated a spatial agent‐based model that generates variation in metacommunity dynamics across multiple axes, including the four classic metacommunity paradigms as special cases. We further simulated a virtual ecologist who analysed snapshot data sampled from the simulations using eighteen output metrics derived from beta‐diversity and habitat variation indices, variation partitioning and joint species distribution modelling. Our results indicated two main axes of variation in the output metrics. The first axis of variation described whether the landscape has patchy or continuous variation, and thus was essentially independent of the properties of the species community. The second axis of variation related to the level of predictability of the metacommunity. The most predictable communities were niche‐based metacommunities inhabiting static landscapes with marked environmental heterogeneity, such as metacommunities following the species sorting paradigm or the mass effects paradigm. The most unpredictable communities were neutral‐based metacommunities inhabiting dynamics landscapes with little spatial heterogeneity, such as metacommunities following the neutral or patch sorting paradigms. The output metrics from joint species distribution modelling yielded generally the highest resolution to disentangle among the simulated scenarios. Yet, the different types of statistical approaches utilized in this study carried complementary information, and thus our results suggest that the most comprehensive evaluation of metacommunity structure can be obtained by combining them. }, author = {Ovaskainen, Otso and Rybicki, Joel and Abrego, Nerea}, issn = {1600-0587}, journal = {Ecography}, number = {11}, pages = {1877--1886}, publisher = {Wiley}, title = {{What can observational data reveal about metacommunity processes?}}, doi = {10.1111/ecog.04444}, volume = {42}, year = {2019}, } @article{6857, abstract = {Gene Drives are regarded as future tools with a high potential for population control. Due to their inherent ability to overcome the rules of Mendelian inheritance, gene drives (GD) may spread genes rapidly through populations of sexually reproducing organisms. A release of organisms carrying a GD would constitute a paradigm shift in the handling of genetically modified organisms because gene drive organisms (GDO) are designed to drive their transgenes into wild populations and thereby increase the number of GDOs. The rapid development in this field and its focus on wild populations demand a prospective risk assessment with a focus on exposure related aspects. Presently, it is unclear how adequate risk management could be guaranteed to limit the spread of GDs in time and space, in order to avoid potential adverse effects in socio‐ecological systems. The recent workshop on the “Evaluation of Spatial and Temporal Control of Gene Drives” hosted by the Institute of Safety/Security and Risk Sciences (ISR) in Vienna aimed at gaining some insight into the potential population dynamic behavior of GDs and appropriate measures of control. Scientists from France, Germany, England, and the USA discussed both topics in this meeting on April 4–5, 2019. This article summarizes results of the workshop.}, author = {Giese, B and Friess, J L and Schetelig, M F and Barton, Nicholas H and Messer, Philip and Debarre, Florence and Meimberg, H and Windbichler, N and Boete, C}, issn = {1521-1878}, journal = {BioEssays}, number = {11}, publisher = {Wiley}, title = {{Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna}}, doi = {10.1002/bies.201900151}, volume = {41}, year = {2019}, } @inbook{6890, abstract = {Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.}, author = {Obr, Martin and Schur, Florian KM}, booktitle = {Complementary Strategies to Study Virus Structure and Function}, editor = {Rey, Félix A.}, isbn = {9780128184561}, issn = {0065-3527}, pages = {117--159}, publisher = {Elsevier}, title = {{Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging}}, doi = {10.1016/bs.aivir.2019.07.008}, volume = {105}, year = {2019}, } @article{6940, abstract = {We study the effect of a linear tunneling coupling between two-dimensional systems, each separately exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there are two phases: one where the one-body correlation functions are algebraically decaying and the other with exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is present. We provide a picture of the phase diagram using a renormalization group approach.}, author = {Bighin, Giacomo and Defenu, Nicolò and Nándori, István and Salasnich, Luca and Trombettoni, Andrea}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {10}, publisher = {American Physical Society}, title = {{Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models}}, doi = {10.1103/physrevlett.123.100601}, volume = {123}, year = {2019}, } @article{6919, author = {Qi, Chao and Minin, Giulio Di and Vercellino, Irene and Wutz, Anton and Korkhov, Volodymyr M.}, issn = {23752548}, journal = {Science Advances}, number = {9}, publisher = {American Association for the Advancement of Science}, title = {{Structural basis of sterol recognition by human hedgehog receptor PTCH1}}, doi = {10.1126/sciadv.aaw6490}, volume = {5}, year = {2019}, }