@misc{5442,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural properties that arise in program analysis.
We consider that each component of the concurrent system is a graph with constant treewidth, and it is known that the controlflow graphs of most programs have constant treewidth. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis problems (e.g., alias analysis). The study of multiple queries allows us to consider the tradeoff between the resource usage of the \emph{one-time} preprocessing and for \emph{each individual} query. The traditional approaches construct the product graph of all components and apply the best-known graph algorithm on the product. In the traditional approach, even the answer to a single query requires the transitive closure computation (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time.
Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time,
each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results that show that the worst-case running times of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (such as improving
the worst-case bounds for the shortest path problem in general graphs whose current best-known bound has not been improved in five decades). Finally, we provide a prototype implementation of our algorithms which significantly outperforms the existing algorithmic methods on several benchmarks.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
year = {2015},
}
@misc{5443,
abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica},
issn = {2664-1690},
pages = {23},
publisher = {IST Austria},
title = {{A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs}},
doi = {10.15479/AT:IST-2015-325-v2-1},
year = {2015},
}
@misc{5444,
abstract = {A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal.},
author = {Reiter, Johannes and Makohon-Moore, Alvin and Gerold, Jeffrey and Bozic, Ivana and Chatterjee, Krishnendu and Iacobuzio-Donahue, Christine and Vogelstein, Bert and Nowak, Martin},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{Reconstructing robust phylogenies of metastatic cancers}},
doi = {10.15479/AT:IST-2015-399-v1-1},
year = {2015},
}
@misc{5549,
abstract = {This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.},
author = {Fellner, Andreas},
keywords = {Markov Decision Process, Decision Tree, Probabilistic Verification, Counterexample Explanation},
publisher = {IST Austria},
title = {{Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes}},
doi = {10.15479/AT:ISTA:28},
year = {2015},
}
@article{5804,
abstract = {We present here the first integer-based algorithm for constructing a well-defined lattice sphere specified by integer radius and integer center. The algorithm evolves from a unique correspondence between the lattice points comprising the sphere and the distribution of sum of three square numbers in integer intervals. We characterize these intervals to derive a useful set of recurrences, which, in turn, aids in efficient computation. Each point of the lattice sphere is determined by resorting to only a few primitive operations in the integer domain. The symmetry of its quadraginta octants provides an added advantage by confining the computation to its prima quadraginta octant. Detailed theoretical analysis and experimental results have been furnished to demonstrate its simplicity and elegance.},
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0304-3975},
journal = {Theoretical Computer Science},
number = {4},
pages = {56--72},
publisher = {Elsevier},
title = {{From prima quadraginta octant to lattice sphere through primitive integer operations}},
doi = {10.1016/j.tcs.2015.11.018},
volume = {624},
year = {2015},
}
@article{5807,
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0304-3975},
journal = {Theoretical Computer Science},
number = {11},
pages = {146--163},
publisher = {Elsevier},
title = {{On different topological classes of spherical geodesic paths and circles inZ3}},
doi = {10.1016/j.tcs.2015.09.003},
volume = {605},
year = {2015},
}
@article{5808,
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0178-2789},
journal = {The Visual Computer},
number = {6-8},
pages = {787--797},
publisher = {Springer Nature},
title = {{Layer the sphere}},
doi = {10.1007/s00371-015-1101-3},
volume = {31},
year = {2015},
}
@article{594,
abstract = {Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.},
author = {Sainsbury, Sarah and Bernecky, Carrie A and Cramer, Patrick},
journal = {Nature Reviews Molecular Cell Biology},
number = {3},
pages = {129 -- 143},
publisher = {Nature Publishing Group},
title = {{Structural basis of transcription initiation by RNA polymerase II}},
doi = {10.1038/nrm3952},
volume = {16},
year = {2015},
}
@article{6118,
abstract = {Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.},
author = {Fenk, Lorenz A. and de Bono, Mario},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
number = {27},
pages = {E3525--E3534},
publisher = {National Academy of Sciences},
title = {{Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity}},
doi = {10.1073/pnas.1423808112},
volume = {112},
year = {2015},
}
@article{6120,
abstract = {Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.},
author = {Laurent, Patrick and Soltesz, Zoltan and Nelson, Geoffrey M and Chen, Changchun and Arellano-Carbajal, Fausto and Levy, Emmanuel and de Bono, Mario},
issn = {2050-084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Decoding a neural circuit controlling global animal state in C. elegans}},
doi = {10.7554/elife.04241},
volume = {4},
year = {2015},
}
@article{6507,
abstract = {The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.},
author = {Zhou, Long and Hinerman, J. M. and Blaszczyk, M. and Miller, J. L. C. and Conrady, D. G. and Barrow, A. D. and Chirgadze, D. Y. and Bihan, D. and Farndale, R. W. and Herr, A. B.},
issn = {0006-4971},
journal = {Blood},
number = {5},
pages = {529--537},
publisher = {American Society of Hematology},
title = {{Structural basis for collagen recognition by the immune receptor OSCAR}},
doi = {10.1182/blood-2015-08-667055},
volume = {127},
year = {2015},
}
@article{6736,
abstract = {Motivated by the significant performance gains which polar codes experience under successive cancellation list decoding, their scaling exponent is studied as a function of the list size. In particular, the error probability is fixed, and the tradeoff between the block length and back-off from capacity is analyzed. A lower bound is provided on the error probability under MAP decoding with list size L for any binary-input memoryless output-symmetric channel and for any class of linear codes such that their minimum distance is unbounded as the block length grows large. Then, it is shown that under MAP decoding, although the introduction of a list can significantly improve the involved constants, the scaling exponent itself, i.e., the speed at which capacity is approached, stays unaffected for any finite list size. In particular, this result applies to polar codes, since their minimum distance tends to infinity as the block length increases. A similar result is proved for genie-aided successive cancellation decoding when transmission takes place over the binary erasure channel, namely, the scaling exponent remains constant for any fixed number of helps from the genie. Note that since genie-aided successive cancellation decoding might be strictly worse than successive cancellation list decoding, the problem of establishing the scaling exponent of the latter remains open.},
author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {9},
pages = {4838--4851},
publisher = {IEEE},
title = {{Scaling exponent of list decoders with applications to polar codes}},
doi = {10.1109/tit.2015.2453315},
volume = {61},
year = {2015},
}
@article{6737,
abstract = {This paper presents polar coding schemes for the two-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of two-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a superpolynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. To align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and channel outputs. To remove these constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this paper are quite general, and they can be adopted to many other multiterminal scenarios whenever there polar indices need to be aligned.},
author = {Mondelli, Marco and Hassani, Hamed and Sason, Igal and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {2},
pages = {783--800},
publisher = {IEEE},
title = {{Achieving Marton’s region for broadcast channels using polar codes}},
doi = {10.1109/tit.2014.2368555},
volume = {61},
year = {2015},
}
@article{7070,
abstract = {Torque magnetization measurements on YBa2Cu3Oy (YBCO) at doping y=6.67 (p=0.12), in dc fields (B) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field Hirr(T=0)≈24 T. The differential susceptibility dM/dB, however, is more rapidly suppressed for B≳16 T than expected from the properties of the low field superconducting state, and saturates at a low value for fields B≳24 T. In addition, torque measurements on a p=0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behavior, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with charge-density-wave (CDW) order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes dM/dB to saturate at high field. The diamagnetic signal observed above 50 T for the p=0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger three-dimensional ordered CDW.},
author = {Yu, Jing Fei and Ramshaw, B. J. and Kokanović, I. and Modic, Kimberly A and Harrison, N. and Day, James and Liang, Ruixing and Hardy, W. N. and Bonn, D. A. and McCollam, A. and Julian, S. R. and Cooper, J. R.},
issn = {1098-0121},
journal = {Physical Review B},
number = {18},
publisher = {APS},
title = {{Magnetization of underdoped YBa2Cu3Oy above the irreversibility field}},
doi = {10.1103/physrevb.92.180509},
volume = {92},
year = {2015},
}
@article{1311,
abstract = {In this paper, we develop an energy method to study finite speed of propagation and waiting time phenomena for the stochastic porous media equation with linear multiplicative noise in up to three spatial dimensions. Based on a novel iteration technique and on stochastic counterparts of weighted integral estimates used in the deterministic setting, we formulate a sufficient criterion on the growth of initial data which locally guarantees a waiting time phenomenon to occur almost surely. Up to a logarithmic factor, this criterion coincides with the optimal criterion known from the deterministic setting. Our technique can be modified to prove finite speed of propagation as well.},
author = {Julian Fischer and Grün, Günther},
journal = {SIAM Journal on Mathematical Analysis},
number = {1},
pages = {825 -- 854},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach}},
doi = {10.1137/140960578},
volume = {47},
year = {2015},
}
@article{1313,
abstract = {We present an algorithm for the derivation of lower bounds on support propagation for a certain class of nonlinear parabolic equations. We proceed by combining the ideas in some recent papers by the author with the algorithmic construction of entropies due to Jüngel and Matthes, reducing the problem to a quantifier elimination problem. Due to its complexity, the quantifier elimination problem cannot be solved by present exact algorithms. However, by tackling the quantifier elimination problem numerically, in the case of the thin-film equation we are able to improve recent results by the author in the regime of strong slippage n ∈ (1, 2). For certain second-order doubly nonlinear parabolic equations, we are able to extend the known lower bounds on free boundary propagation to the case of irregular oscillatory initial data. Finally, we apply our method to a sixth-order quantum drift-diffusion equation, resulting in an upper bound on the time which it takes for the support to reach every point in the domain.},
author = {Julian Fischer},
journal = {Interfaces and Free Boundaries},
number = {1},
pages = {1 -- 20},
publisher = {European Mathematical Society Publishing House},
title = {{Estimates on front propagation for nonlinear higher-order parabolic equations: An algorithmic approach}},
doi = {10.4171/IFB/331},
volume = {17},
year = {2015},
}
@article{1314,
abstract = {We derive a posteriori estimates for the modeling error caused by the assumption of perfect incompressibility in the incompressible Navier-Stokes equation: Real fluids are never perfectly incompressible but always feature at least some low amount of compressibility. Thus, their behavior is described by the compressible Navier-Stokes equation, the pressure being a steep function of the density. We rigorously estimate the difference between an approximate solution to the incompressible Navier-Stokes equation and any weak solution to the compressible Navier-Stokes equation in the sense of Lions (without assuming any additional regularity of solutions). Heuristics and numerical results suggest that our error estimates are of optimal order in the case of "well-behaved" flows and divergence-free approximations of the velocity field. Thus, we expect our estimates to justify the idealization of fluids as perfectly incompressible also in practical situations.},
author = {Fischer, Julian L},
journal = {SIAM Journal on Numerical Analysis},
number = {5},
pages = {2178 -- 2205},
publisher = {Society for Industrial and Applied Mathematics },
title = {{A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation}},
doi = {10.1137/140966654},
volume = {53},
year = {2015},
}
@article{1316,
abstract = {In the present work we introduce the notion of a renormalized solution for reaction–diffusion systems with entropy-dissipating reactions. We establish the global existence of renormalized solutions. In the case of integrable reaction terms our notion of a renormalized solution reduces to the usual notion of a weak solution. Our existence result in particular covers all reaction–diffusion systems involving a single reversible reaction with mass-action kinetics and (possibly species-dependent) Fick-law diffusion; more generally, it covers the case of systems of reversible reactions with mass-action kinetics which satisfy the detailed balance condition. For such equations the existence of any kind of solution in general was an open problem, thereby motivating the study of renormalized solutions.},
author = {Julian Fischer},
journal = {Archive for Rational Mechanics and Analysis},
number = {1},
pages = {553 -- 587},
publisher = {Springer},
title = {{Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems}},
doi = {10.1007/s00205-015-0866-x},
volume = {218},
year = {2015},
}
@article{1383,
abstract = {In plants, vacuolar H+-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.},
author = {Yu, Luo and Scholl, Stefan and Doering, Anett and Yi, Zhang and Irani, Niloufer and Di Rubbo, Simone and Neumetzler, Lutz and Krishnamoorthy, Praveen and Van Houtte, Isabelle and Mylle, Evelien and Bischoff, Volker and Vernhettes, Samantha and Winne, Johan and Friml, Jirí and Stierhof, York and Schumacher, Karin and Persson, Staffan and Russinova, Eugenia},
journal = {Nature Plants},
number = {7},
publisher = {Nature Publishing Group},
title = {{V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis}},
doi = {10.1038/nplants.2015.94},
volume = {1},
year = {2015},
}
@phdthesis{1399,
abstract = {This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold.},
author = {Pausinger, Florian},
pages = {144},
publisher = {IST Austria},
title = {{On the approximation of intrinsic volumes}},
year = {2015},
}