@misc{8067, abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, lithium metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (polymeric and inorganic), Lithium-sulphur and Li-O2 (air) batteries. A particular attention is paid to review recent developments in regard of prototype manufacturing and current state-ofthe-art of these battery technologies with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.}, author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander}, issn = {2664-1690}, keywords = {Battery, Lithium metal, Lithium-sulphur, Lithium-air, All-solid-state}, pages = {63}, publisher = {IST Austria}, title = {{Current status and future perspectives of Lithium metal batteries}}, doi = {10.15479/AT:ISTA:8067}, year = {2020}, } @article{8361, abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, Li metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (inorganic and polymeric), Lithium–Sulfur (Li–S) and Lithium-O2 (air) batteries. A particular attention is paid to recent developments of these battery technologies and their current state with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.}, author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander}, issn = {0378-7753}, journal = {Journal of Power Sources}, number = {12}, publisher = {Elsevier}, title = {{Current status and future perspectives of lithium metal batteries}}, doi = {10.1016/j.jpowsour.2020.228803}, volume = {480}, year = {2020}, } @unpublished{14028, abstract = {The present review addresses the technical advances and the theoretical developments to realize and rationalize attosecond-science experiments that reveal a new dynamical time scale (10−15-10−18 s), with a particular emphasis on molecular systems and the implications of attosecond processes for chemical dynamics. After a brief outline of the theoretical framework for treating non-perturbative phenomena in Section 2, we introduce the physical mechanisms underlying high-harmonic generation and attosecond technology. The relevant technological developments and experimental schemes are covered in Section 3. Throughout the remainder of the chapter, we report on selected applications in molecular attosecond physics, thereby addressing specific phenomena mediated by purely electronic dynamics: charge localization in molecular hydrogen, charge migration in biorelevant molecules, high-harmonic spectroscopy, and delays in molecular photoionization.}, author = {Baykusheva, Denitsa Rangelova and Wörner, Hans Jakob}, pages = {2002.02111}, title = {{Attosecond molecular spectroscopy and dynamics}}, doi = {10.48550/arXiv.2002.02111}, year = {2020}, } @article{8529, abstract = {Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform.}, author = {Arnold, Georg M and Wulf, Matthias and Barzanjeh, Shabir and Redchenko, Elena and Rueda Sanchez, Alfredo R and Hease, William J and Hassani, Farid and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Converting microwave and telecom photons with a silicon photonic nanomechanical interface}}, doi = {10.1038/s41467-020-18269-z}, volume = {11}, year = {2020}, } @article{8535, abstract = {We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation.}, author = {Skrivan, Tomas and Soderstrom, Andreas and Johansson, John and Sprenger, Christoph and Museth, Ken and Wojtan, Christopher J}, issn = {15577368}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces}}, doi = {10.1145/3386569.3392466}, volume = {39}, year = {2020}, } @article{8539, abstract = {Cohomological and K-theoretic stable bases originated from the study of quantum cohomology and quantum K-theory. Restriction formula for cohomological stable bases played an important role in computing the quantum connection of cotangent bundle of partial flag varieties. In this paper we study the K-theoretic stable bases of cotangent bundles of flag varieties. We describe these bases in terms of the action of the affine Hecke algebra and the twisted group algebra of KostantKumar. Using this algebraic description and the method of root polynomials, we give a restriction formula of the stable bases. We apply it to obtain the restriction formula for partial flag varieties. We also build a relation between the stable basis and the Casselman basis in the principal series representations of the Langlands dual group. As an application, we give a closed formula for the transition matrix between Casselman basis and the characteristic functions.}, author = {Su, C. and Zhao, Gufang and Zhong, C.}, issn = {0012-9593}, journal = {Annales Scientifiques de l'Ecole Normale Superieure}, number = {3}, pages = {663--671}, publisher = {Société Mathématique de France}, title = {{On the K-theory stable bases of the springer resolution}}, doi = {10.24033/asens.2431}, volume = {53}, year = {2020}, } @inbook{14000, abstract = {This chapter presents an overview of the state of the art in attosecond time-resolved spectroscopy. The theoretical foundations of strong-field light–matter interaction and attosecond pulse generation are described. The enabling laser technologies are reviewed from chirped-pulse amplification and carrier-envelope-phase stabilization to the generation and characterization of attosecond pulses. The applications of attosecond pulses and pulse trains in electron- or ion-imaging experiments are presented, followed by attosecond electron spectroscopy in larger molecules. After this, high-harmonic spectroscopy and its applications to probing charge migration on attosecond time scales is reviewed. The rapidly evolving field of molecular photoionization delays is discussed. Finally, the applications of attosecond transient absorption to probing molecular dynamics are presented.}, author = {Baykusheva, Denitsa Rangelova and Wörner, Hans Jakob}, booktitle = {Molecular Spectroscopy and Quantum Dynamics}, editor = {Marquardt, Roberto and Quack, Martin}, isbn = {9780128172353}, pages = {113--161}, publisher = {Elsevier}, title = {{Attosecond Molecular Dynamics and Spectroscopy}}, doi = {10.1016/b978-0-12-817234-6.00009-x}, year = {2020}, } @misc{13056, abstract = {This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request.}, author = {Arnold, Georg M and Wulf, Matthias and Barzanjeh, Shabir and Redchenko, Elena and Rueda Sanchez, Alfredo R and Hease, William J and Hassani, Farid and Fink, Johannes M}, publisher = {Zenodo}, title = {{Converting microwave and telecom photons with a silicon photonic nanomechanical interface}}, doi = {10.5281/ZENODO.3961561}, year = {2020}, } @article{8579, abstract = {Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.}, author = {Andrei, Andreea and Öztürk, Yavuz and Khalfaoui-Hassani, Bahia and Rauch, Juna and Marckmann, Dorian and Trasnea, Petru Iulian and Daldal, Fevzi and Koch, Hans-Georg}, issn = {20770375}, journal = {Membranes}, number = {9}, publisher = {MDPI}, title = {{Cu homeostasis in bacteria: The ins and outs}}, doi = {10.3390/membranes10090242}, volume = {10}, year = {2020}, } @article{8581, abstract = {The majority of adenosine triphosphate (ATP) powering cellular processes in eukaryotes is produced by the mitochondrial F1Fo ATP synthase. Here, we present the atomic models of the membrane Fo domain and the entire mammalian (ovine) F1Fo, determined by cryo-electron microscopy. Subunits in the membrane domain are arranged in the ‘proton translocation cluster’ attached to the c-ring and a more distant ‘hook apparatus’ holding subunit e. Unexpectedly, this subunit is anchored to a lipid ‘plug’ capping the c-ring. We present a detailed proton translocation pathway in mammalian Fo and key inter-monomer contacts in F1Fo multimers. Cryo-EM maps of F1Fo exposed to calcium reveal a retracted subunit e and a disassembled c-ring, suggesting permeability transition pore opening. We propose a model for the permeability transition pore opening, whereby subunit e pulls the lipid plug out of the c-ring. Our structure will allow the design of drugs for many emerging applications in medicine.}, author = {Pinke, Gergely and Zhou, Long and Sazanov, Leonid A}, issn = {15459985}, journal = {Nature Structural and Molecular Biology}, number = {11}, pages = {1077--1085}, publisher = {Springer Nature}, title = {{Cryo-EM structure of the entire mammalian F-type ATP synthase}}, doi = {10.1038/s41594-020-0503-8}, volume = {27}, year = {2020}, } @inproceedings{8580, abstract = {We evaluate the usefulness of persistent homology in the analysis of heart rate variability. In our approach we extract several topological descriptors characterising datasets of RR-intervals, which are later used in classical machine learning algorithms. By this method we are able to differentiate the group of patients with the history of transient ischemic attack and the group of hypertensive patients.}, author = {Graff, Grzegorz and Graff, Beata and Jablonski, Grzegorz and Narkiewicz, Krzysztof}, booktitle = {11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, }, isbn = {9781728157511}, location = {Pisa, Italy}, publisher = {IEEE}, title = {{The application of persistent homology in the analysis of heart rate variability}}, doi = {10.1109/ESGCO49734.2020.9158054}, year = {2020}, } @article{8592, abstract = {Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma.}, author = {Tian, Anhao and Kang, Bo and Li, Baizhou and Qiu, Biying and Jiang, Wenhong and Shao, Fangjie and Gao, Qingqing and Liu, Rui and Cai, Chengwei and Jing, Rui and Wang, Wei and Chen, Pengxiang and Liang, Qinghui and Bao, Lili and Man, Jianghong and Wang, Yan and Shi, Yu and Li, Jin and Yang, Minmin and Wang, Lisha and Zhang, Jianmin and Hippenmeyer, Simon and Zhu, Junming and Bian, Xiuwu and Wang, Ying‐Jie and Liu, Chong}, issn = {2198-3844}, journal = {Advanced Science}, keywords = {General Engineering, General Physics and Astronomy, General Materials Science, Medicine (miscellaneous), General Chemical Engineering, Biochemistry, Genetics and Molecular Biology (miscellaneous)}, number = {21}, publisher = {Wiley}, title = {{Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting}}, doi = {10.1002/advs.202001724}, volume = {7}, year = {2020}, } @article{8568, abstract = {Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.}, author = {Prehal, Christian and Fitzek, Harald and Kothleitner, Gerald and Presser, Volker and Gollas, Bernhard and Freunberger, Stefan Alexander and Abbas, Qamar}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Persistent and reversible solid iodine electrodeposition in nanoporous carbons}}, doi = {10.1038/s41467-020-18610-6}, volume = {11}, year = {2020}, } @article{8643, abstract = {The parabigeminal nucleus (PBG) is the mammalian homologue to the isthmic complex of other vertebrates. Optogenetic stimulation of the PBG induces freezing and escape in mice, a result thought to be caused by a PBG projection to the central nucleus of the amygdala. However, the isthmic complex, including the PBG, has been classically considered satellite nuclei of the Superior Colliculus (SC), which upon stimulation of its medial part also triggers fear and avoidance reactions. As the PBG-SC connectivity is not well characterized, we investigated whether the topology of the PBG projection to the SC could be related to the behavioral consequences of PBG stimulation. To that end, we performed immunohistochemistry, in situ hybridization and neural tracer injections in the SC and PBG in a diurnal rodent, the Octodon degus. We found that all PBG neurons expressed both glutamatergic and cholinergic markers and were distributed in clearly defined anterior (aPBG) and posterior (pPBG) subdivisions. The pPBG is connected reciprocally and topographically to the ipsilateral SC, whereas the aPBG receives afferent axons from the ipsilateral SC and projected exclusively to the contralateral SC. This contralateral projection forms a dense field of terminals that is restricted to the medial SC, in correspondence with the SC representation of the aerial binocular field which, we also found, in O. degus prompted escape reactions upon looming stimulation. Therefore, this specialized topography allows binocular interactions in the SC region controlling responses to aerial predators, suggesting a link between the mechanisms by which the SC and PBG produce defensive behaviors.}, author = {Deichler, Alfonso and Carrasco, Denisse and Lopez-Jury, Luciana and Vega Zuniga, Tomas A and Marquez, Natalia and Mpodozis, Jorge and Marin, Gonzalo}, issn = {20452322}, journal = {Scientific Reports}, publisher = {Springer Nature}, title = {{A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents}}, doi = {10.1038/s41598-020-72848-0}, volume = {10}, year = {2020}, } @article{8645, abstract = {Epistasis, the context-dependence of the contribution of an amino acid substitution to fitness, is common in evolution. To detect epistasis, fitness must be measured for at least four genotypes: the reference genotype, two different single mutants and a double mutant with both of the single mutations. For higher-order epistasis of the order n, fitness has to be measured for all 2n genotypes of an n-dimensional hypercube in genotype space forming a ‘combinatorially complete dataset’. So far, only a handful of such datasets have been produced by manual curation. Concurrently, random mutagenesis experiments have produced measurements of fitness and other phenotypes in a high-throughput manner, potentially containing a number of combinatorially complete datasets. We present an effective recursive algorithm for finding all hypercube structures in random mutagenesis experimental data. To test the algorithm, we applied it to the data from a recent HIS3 protein dataset and found all 199 847 053 unique combinatorially complete genotype combinations of dimensionality ranging from 2 to 12. The algorithm may be useful for researchers looking for higher-order epistasis in their high-throughput experimental data.}, author = {Esteban, Laura A and Lonishin, Lyubov R and Bobrovskiy, Daniil M and Leleytner, Gregory and Bogatyreva, Natalya S and Kondrashov, Fyodor and Ivankov, Dmitry N }, issn = {1460-2059}, journal = {Bioinformatics}, number = {6}, pages = {1960--1962}, publisher = {Oxford Academic}, title = {{HypercubeME: Two hundred million combinatorially complete datasets from a single experiment}}, doi = {10.1093/bioinformatics/btz841}, volume = {36}, year = {2020}, } @article{8597, abstract = {Error analysis and data visualization of positive COVID-19 cases in 27 countries have been performed up to August 8, 2020. This survey generally observes a progression from early exponential growth transitioning to an intermediate power-law growth phase, as recently suggested by Ziff and Ziff. The occurrence of logistic growth after the power-law phase with lockdowns or social distancing may be described as an effect of avoidance. A visualization of the power-law growth exponent over short time windows is qualitatively similar to the Bhatia visualization for pandemic progression. Visualizations like these can indicate the onset of second waves and may influence social policy.}, author = {Merrin, Jack}, issn = {14783975}, journal = {Physical Biology}, number = {6}, publisher = {IOP Publishing}, title = {{Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide}}, doi = {10.1088/1478-3975/abb2db}, volume = {17}, year = {2020}, } @article{8674, abstract = {Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.}, author = {Henneberger, Christian and Bard, Lucie and Panatier, Aude and Reynolds, James P. and Kopach, Olga and Medvedev, Nikolay I. and Minge, Daniel and Herde, Michel K. and Anders, Stefanie and Kraev, Igor and Heller, Janosch P. and Rama, Sylvain and Zheng, Kaiyu and Jensen, Thomas P. and Sanchez-Romero, Inmaculada and Jackson, Colin J. and Janovjak, Harald L and Ottersen, Ole Petter and Nagelhus, Erlend Arnulf and Oliet, Stephane H.R. and Stewart, Michael G. and Nägerl, U. VAlentin and Rusakov, Dmitri A. }, issn = {10974199}, journal = {Neuron}, number = {5}, pages = {P919--936.E11}, publisher = {Elsevier}, title = {{LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia}}, doi = {10.1016/j.neuron.2020.08.030}, volume = {108}, year = {2020}, } @article{8652, abstract = {Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules.}, author = {Ghazaryan, Areg and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2399-3650}, journal = {Communications Physics}, publisher = {Springer Nature}, title = {{Filtering spins by scattering from a lattice of point magnets}}, doi = {10.1038/s42005-020-00445-8}, volume = {3}, year = {2020}, } @article{8669, abstract = {Pancreatic islets play an essential role in regulating blood glucose level. Although the molecular pathways underlying islet cell differentiation are beginning to be resolved, the cellular basis of islet morphogenesis and fate allocation remain unclear. By combining unbiased and targeted lineage tracing, we address the events leading to islet formation in the mouse. From the statistical analysis of clones induced at multiple embryonic timepoints, here we show that, during the secondary transition, islet formation involves the aggregation of multiple equipotent endocrine progenitors that transition from a phase of stochastic amplification by cell division into a phase of sublineage restriction and limited islet fission. Together, these results explain quantitatively the heterogeneous size distribution and degree of polyclonality of maturing islets, as well as dispersion of progenitors within and between islets. Further, our results show that, during the secondary transition, α- and β-cells are generated in a contemporary manner. Together, these findings provide insight into the cellular basis of islet development.}, author = {Sznurkowska, Magdalena K. and Hannezo, Edouard B and Azzarelli, Roberta and Chatzeli, Lemonia and Ikeda, Tatsuro and Yoshida, Shosei and Philpott, Anna and Simons, Benjamin D}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Tracing the cellular basis of islet specification in mouse pancreas}}, doi = {10.1038/s41467-020-18837-3}, volume = {11}, year = {2020}, } @article{8672, abstract = {Cell fate transitions are key to development and homeostasis. It is thus essential to understand the cellular mechanisms controlling fate transitions. Cell division has been implicated in fate decisions in many stem cell types, including neuronal and epithelial progenitors. In other stem cells, such as embryonic stem (ES) cells, the role of division remains unclear. Here, we show that exit from naive pluripotency in mouse ES cells generally occurs after a division. We further show that exit timing is strongly correlated between sister cells, which remain connected by cytoplasmic bridges long after division, and that bridge abscission progressively accelerates as cells exit naive pluripotency. Finally, interfering with abscission impairs naive pluripotency exit, and artificially inducing abscission accelerates it. Altogether, our data indicate that a switch in the division machinery leading to faster abscission regulates pluripotency exit. Our study identifies abscission as a key cellular process coupling cell division to fate transitions.}, author = {Chaigne, Agathe and Labouesse, Céline and White, Ian J. and Agnew, Meghan and Hannezo, Edouard B and Chalut, Kevin J. and Paluch, Ewa K.}, issn = {18781551}, journal = {Developmental Cell}, number = {2}, pages = {195--208}, publisher = {Elsevier}, title = {{Abscission couples cell division to embryonic stem cell fate}}, doi = {10.1016/j.devcel.2020.09.001}, volume = {55}, year = {2020}, }