@article{15146, abstract = {The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.}, author = {Zens, Bettina and Fäßler, Florian and Hansen, Jesse and Hauschild, Robert and Datler, Julia and Hodirnau, Victor-Valentin and Zheden, Vanessa and Alanko, Jonna H and Sixt, Michael K and Schur, Florian KM}, issn = {1540-8140}, journal = {Journal of Cell Biology}, number = {6}, publisher = {Rockefeller University Press}, title = {{Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix}}, doi = {10.1083/jcb.202309125}, volume = {223}, year = {2024}, } @article{14931, abstract = {We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin et al. (1971) [15].}, author = {Lauritsen, Asbjørn Bækgaard and Seiringer, Robert}, issn = {1096--0783}, journal = {Journal of Functional Analysis}, number = {7}, publisher = {Elsevier}, title = {{Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion}}, doi = {10.1016/j.jfa.2024.110320}, volume = {286}, year = {2024}, } @inbook{12428, abstract = {The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.}, author = {Hannezo, Edouard B and Scheele, Colinda L.G.J.}, booktitle = {Cell Migration in Three Dimensions}, editor = {Margadant, Coert}, isbn = {9781071628867}, issn = {1940-6029}, pages = {183--205}, publisher = {Springer Nature}, title = {{A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland}}, doi = {10.1007/978-1-0716-2887-4_12}, volume = {2608}, year = {2023}, } @article{12534, abstract = {Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics.}, author = {Ghazaryan, Areg and Cappellaro, Alberto and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Dissipative dynamics of an impurity with spin-orbit coupling}}, doi = {10.1103/physrevresearch.5.013029}, volume = {5}, year = {2023}, } @article{12158, abstract = {Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.}, author = {Zeller, Peter and Yeung, Jake and Viñas Gaza, Helena and de Barbanson, Buys Anton and Bhardwaj, Vivek and Florescu, Maria and van der Linden, Reinier and van Oudenaarden, Alexander}, issn = {1546-1718}, journal = {Nature Genetics}, keywords = {Genetics}, pages = {333--345}, publisher = {Springer Nature}, title = {{Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis}}, doi = {10.1038/s41588-022-01260-3}, volume = {55}, year = {2023}, } @inproceedings{12676, abstract = {Turn-based stochastic games (aka simple stochastic games) are two-player zero-sum games played on directed graphs with probabilistic transitions. The goal of player-max is to maximize the probability to reach a target state against the adversarial player-min. These games lie in NP ∩ coNP and are among the rare combinatorial problems that belong to this complexity class for which the existence of polynomial-time algorithm is a major open question. While randomized sub-exponential time algorithm exists, all known deterministic algorithms require exponential time in the worst-case. An important open question has been whether faster algorithms can be obtained parametrized by the treewidth of the game graph. Even deterministic sub-exponential time algorithm for constant treewidth turn-based stochastic games has remain elusive. In this work our main result is a deterministic algorithm to solve turn-based stochastic games that, given a game with n states, treewidth at most t, and the bit-complexity of the probabilistic transition function log D, has running time O ((tn2 log D)t log n). In particular, our algorithm is quasi-polynomial time for games with constant or poly-logarithmic treewidth.}, author = {Chatterjee, Krishnendu and Meggendorfer, Tobias and Saona Urmeneta, Raimundo J and Svoboda, Jakub}, booktitle = {Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {9781611977554}, location = {Florence, Italy}, pages = {4590--4605}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Faster algorithm for turn-based stochastic games with bounded treewidth}}, doi = {10.1137/1.9781611977554.ch173}, year = {2023}, } @inbook{12720, abstract = {Here we describe the in vivo DNA assembly approach, where molecular cloning procedures are performed using an E. coli recA-independent recombination pathway, which assembles linear fragments of DNA with short homologous termini. This pathway is present in all standard laboratory E. coli strains and, by bypassing the need for in vitro DNA assembly, allows simplified molecular cloning to be performed without the plasmid instability issues associated with specialized recombination-cloning bacterial strains. The methodology requires specific primer design and can perform all standard plasmid modifications (insertions, deletions, mutagenesis, and sub-cloning) in a rapid, simple, and cost-efficient manner, as it does not require commercial kits or specialized bacterial strains. Additionally, this approach can be used to perform complex procedures such as multiple modifications to a plasmid, as up to 6 linear fragments can be assembled in vivo by this recombination pathway. Procedures generally require less than 3 h, involving PCR amplification, DpnI digestion of template DNA, and transformation, upon which circular plasmids are assembled. In this chapter we describe the requirements, procedure, and potential pitfalls when using this technique, as well as protocol variations to overcome the most common issues.}, author = {Arroyo-Urea, Sandra and Watson, Jake and García-Nafría, Javier}, booktitle = {DNA Manipulation and Analysis}, editor = {Scarlett, Garry}, isbn = {978-1-0716-3003-7}, issn = {1940-6029}, pages = {33--44}, publisher = {Springer Nature}, title = {{Molecular Cloning Using In Vivo DNA Assembly}}, doi = {10.1007/978-1-0716-3004-4_3}, volume = {2633}, year = {2023}, } @inproceedings{12735, abstract = {Asynchronous programming has gained significant popularity over the last decade: support for this programming pattern is available in many popular languages via libraries and native language implementations, typically in the form of coroutines or the async/await construct. Instead of programming via shared memory, this concept assumes implicit synchronization through message passing. The key data structure enabling such communication is the rendezvous channel. Roughly, a rendezvous channel is a blocking queue of size zero, so both send(e) and receive() operations wait for each other, performing a rendezvous when they meet. To optimize the message passing pattern, channels are usually equipped with a fixed-size buffer, so sends do not suspend and put elements into the buffer until its capacity is exceeded. This primitive is known as a buffered channel. This paper presents a fast and scalable algorithm for both rendezvous and buffered channels. Similarly to modern queues, our solution is based on an infinite array with two positional counters for send(e) and receive() operations, leveraging the unconditional Fetch-And-Add instruction to update them. Yet, the algorithm requires non-trivial modifications of this classic pattern, in order to support the full channel semantics, such as buffering and cancellation of waiting requests. We compare the performance of our solution to that of the Kotlin implementation, as well as against other academic proposals, showing up to 9.8× speedup. To showcase its expressiveness and performance, we also integrated the proposed algorithm into the standard Kotlin Coroutines library, replacing the previous channel implementations.}, author = {Koval, Nikita and Alistarh, Dan-Adrian and Elizarov, Roman}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, isbn = {9798400700156}, location = {Montreal, QC, Canada}, pages = {107--118}, publisher = {Association for Computing Machinery}, title = {{Fast and scalable channels in Kotlin Coroutines}}, doi = {10.1145/3572848.3577481}, year = {2023}, } @misc{12736, abstract = {Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (Universal Constructions or UCs) for building concurrent data structures. UCs (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks [3, 6] that protect a sequential data structure and allow only one process to access it at a time. However, the resulting data structure is blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al., and an efficient UC for large objects [1] by Fatourou et al.}, author = {Aksenov, Vitaly and Brown, Trevor A and Fedorov, Alexander and Kokorin, Ilya}, booktitle = {Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, isbn = {9798400700156}, location = {Montreal, QB, Canada}, pages = {438--440}, publisher = {Association for Computing Machinery}, title = {{Unexpected scaling in path copying trees}}, doi = {10.1145/3572848.3577512}, year = {2023}, } @inproceedings{12760, abstract = {Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However, many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity. In this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce a novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and space in the static setting, and with polylogarithmic update times when the DP entries change dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W] using only polylog(n, W) bits, and to perform operations, such as (min, +)-convolution or rounding, on these functions in polylogarithmic time. We further present several applications of our data structure. For bicriteria versions of k-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack.}, author = {Henzinger, Monika H and Neumann, Stefan and Räcke, Harald and Schmid, Stefan}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science}, isbn = {9783959772662}, issn = {1868-8969}, location = {Hamburg, Germany}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Dynamic maintenance of monotone dynamic programs and applications}}, doi = {10.4230/LIPIcs.STACS.2023.36}, volume = {254}, year = {2023}, } @phdthesis{12716, abstract = {The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process. Our knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism.}, author = {Burnett, Laura}, issn = {2663-337X}, pages = {178}, publisher = {Institute of Science and Technology Austria}, title = {{To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism}}, doi = {10.15479/at:ista:12716}, year = {2023}, } @inproceedings{12854, abstract = {The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis. At SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition.}, author = {Chalupa, Marek and Henzinger, Thomas A}, booktitle = {Tools and Algorithms for the Construction and Analysis of Systems}, isbn = {9783031308192}, issn = {1611-3349}, location = {Paris, France}, pages = {535--540}, publisher = {Springer Nature}, title = {{Bubaak: Runtime monitoring of program verifiers}}, doi = {10.1007/978-3-031-30820-8_32}, volume = {13994}, year = {2023}, } @unpublished{12846, abstract = {We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons.}, author = {Chern, Albert and Ishida, Sadashige}, booktitle = {arXiv}, title = {{Area formula for spherical polygons via prequantization}}, doi = {10.48550/arXiv.2303.14555}, year = {2023}, } @inproceedings{12856, abstract = {As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch.}, author = {Chalupa, Marek and Mühlböck, Fabian and Muroya Lei, Stefanie and Henzinger, Thomas A}, booktitle = {Fundamental Approaches to Software Engineering}, isbn = {9783031308253}, issn = {1611-3349}, location = {Paris, France}, pages = {260--281}, publisher = {Springer Nature}, title = {{Vamos: Middleware for best-effort third-party monitoring}}, doi = {10.1007/978-3-031-30826-0_15}, volume = {13991}, year = {2023}, } @misc{12407, abstract = {As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both. We present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems. We implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch.}, author = {Chalupa, Marek and Mühlböck, Fabian and Muroya Lei, Stefanie and Henzinger, Thomas A}, issn = {2664-1690}, keywords = {runtime monitoring, best effort, third party}, pages = {38}, publisher = {Institute of Science and Technology Austria}, title = {{VAMOS: Middleware for Best-Effort Third-Party Monitoring}}, doi = {10.15479/AT:ISTA:12407}, year = {2023}, } @inbook{12866, abstract = {Autism spectrum disorder (ASD) and epilepsy are frequently comorbid neurodevelopmental disorders. Extensive research has demonstrated shared pathological pathways, etiologies, and phenotypes. Many risk factors for these disorders, like genetic mutations and environmental pressures, are linked to changes in childhood brain development, which is a critical period for their manifestation. Decades of research have yielded many signatures for ASD and epilepsy, some shared and others unique or opposing. The anatomical, physiological, and behavioral correlates of these disorders are discussed in this chapter in the context of understanding shared pathological pathways. We end with important takeaways on the presentation, prevention, intervention, and policy changes for ASD and epilepsy. This chapter aims to explore the complexity of these disorders, both in etiology and phenotypes, with the further goal of appreciating the expanse of unknowns still to explore about the brain.}, author = {Currin, Christopher and Beyer, Chad}, booktitle = {Encyclopedia of Child and Adolescent Health}, editor = {Halpern-Felsher, Bonnie}, isbn = {9780128188736}, pages = {86--98}, publisher = {Elsevier}, title = {{Altered childhood brain development in autism and epilepsy}}, doi = {10.1016/b978-0-12-818872-9.00129-1}, year = {2023}, } @phdthesis{12809, abstract = {Understanding the mechanisms of learning and memory formation has always been one of the main goals in neuroscience. Already Pavlov (1927) in his early days has used his classic conditioning experiments to study the neural mechanisms governing behavioral adaptation. What was not known back then was that the part of the brain that is largely responsible for this type of associative learning is the cerebellum. Since then, plenty of theories on cerebellar learning have emerged. Despite their differences, one thing they all have in common is that learning relies on synaptic and intrinsic plasticity. The goal of my PhD project was to unravel the molecular mechanisms underlying synaptic plasticity in two synapses that have been shown to be implicated in motor learning, in an effort to understand how learning and memory formation are processed in the cerebellum. One of the earliest and most well-known cerebellar theories postulates that motor learning largely depends on long-term depression at the parallel fiber-Purkinje cell (PC-PC) synapse. However, the discovery of other types of plasticity in the cerebellar circuitry, like long-term potentiation (LTP) at the PC-PC synapse, potentiation of molecular layer interneurons (MLIs), and plasticity transfer from the cortex to the cerebellar/ vestibular nuclei has increased the popularity of the idea that multiple sites of plasticity might be involved in learning. Still a lot remains unknown about the molecular mechanisms responsible for these types of plasticity and whether they occur during physiological learning. In the first part of this thesis we have analyzed the variation and nanodistribution of voltagegated calcium channels (VGCCs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type glutamate receptors (AMPARs) on the parallel fiber-Purkinje cell synapse after vestibuloocular reflex phase reversal adaptation, a behavior that has been suggested to rely on PF-PC LTP. We have found that on the last day of adaptation there is no learning trace in form of VGCCs nor AMPARs variation at the PF-PC synapse, but instead a decrease in the number of PF-PC synapses. These data seem to support the view that learning is only stored in the cerebellar cortex in an initial learning phase, being transferred later to the vestibular nuclei. Next, we have studied the role of MLIs in motor learning using a relatively simple and well characterized behavioral paradigm – horizontal optokinetic reflex (HOKR) adaptation. We have found behavior-induced MLI potentiation in form of release probability increase that could be explained by the increase of VGCCs at the presynaptic side. Our results strengthen the idea of distributed cerebellar plasticity contributing to learning and provide a novel mechanism for release probability increase. }, author = {Alcarva, Catarina}, issn = {2663 - 337X}, pages = {115}, publisher = {Institute of Science and Technology Austria}, title = {{Plasticity in the cerebellum: What molecular mechanisms are behind physiological learning}}, doi = {10.15479/at:ista:12809}, year = {2023}, } @article{12668, abstract = {Background: Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. Results: Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal–distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. Conclusions: Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.}, author = {Zhao, Long and Yang, Yiman and Chen, Jinchao and Lin, Xuelei and Zhang, Hao and Wang, Hao and Wang, Hongzhe and Bie, Xiaomin and Jiang, Jiafu and Feng, Xiaoqi and Fu, Xiangdong and Zhang, Xiansheng and Du, Zhuo and Xiao, Jun}, issn = {1474-760X}, journal = {Genome Biology}, publisher = {Springer Nature}, title = {{Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat}}, doi = {10.1186/s13059-022-02844-2}, volume = {24}, year = {2023}, } @article{12920, abstract = {The multicomponent approach allows to incorporate several functionalities into a single covalent organic framework (COF) and consequently allows the construction of bifunctional materials for cooperative catalysis. The well-defined structure of such multicomponent COFs is furthermore ideally suited for structure-activity relationship studies. We report a series of multicomponent COFs that contain acridine- and 2,2’-bipyridine linkers connected through 1,3,5-benzenetrialdehyde derivatives. The acridine motif is responsible for broad light absorption, while the bipyridine unit enables complexation of nickel catalysts. These features enable the usage of the framework materials as catalysts for light-mediated carbon−heteroatom cross-couplings. Variation of the node units shows that the catalytic activity correlates to the keto-enamine tautomer isomerism. This allows switching between high charge-carrier mobility and persistent, localized charge-separated species depending on the nodes, a tool to tailor the materials for specific reactions. Moreover, nickel-loaded COFs are recyclable and catalyze cross-couplings even using red light irradiation.}, author = {Traxler, Michael and Reischauer, Susanne and Vogl, Sarah and Roeser, Jérôme and Rabeah, Jabor and Penschke, Christopher and Saalfrank, Peter and Pieber, Bartholomäus and Thomas, Arne}, issn = {1521-3765}, journal = {Chemistry – A European Journal}, keywords = {General Chemistry, Catalysis, Organic Chemistry}, number = {4}, publisher = {Wiley}, title = {{Programmable photocatalytic activity of multicomponent covalent organic frameworks used as metallaphotocatalysts}}, doi = {10.1002/chem.202202967}, volume = {29}, year = {2023}, } @article{12921, abstract = {Visible-light photocatalysis provides numerous useful methodologies for synthetic organic chemistry. However, the mechanisms of these reactions are often not fully understood. Common mechanistic experiments mainly aim to characterize excited state properties of photocatalysts and their interaction with other species. Recently, in situ reaction monitoring using dedicated techniques was shown to be well-suited for the identification of intermediates and to obtain kinetic insights, thereby providing more holistic pictures of the reactions of interest. This minireview surveys these technologies and discusses selected examples where reaction monitoring was used to elucidate the mechanism of photocatalytic reactions.}, author = {Madani, Amiera and Pieber, Bartholomäus}, issn = {1867-3899}, journal = {ChemCatChem}, keywords = {Inorganic Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Catalysis}, number = {7}, publisher = {Wiley}, title = {{In situ reaction monitoring in photocatalytic organic synthesis}}, doi = {10.1002/cctc.202201583}, volume = {15}, year = {2023}, }