@article{8697, abstract = {In the computation of the material properties of random alloys, the method of 'special quasirandom structures' attempts to approximate the properties of the alloy on a finite volume with higher accuracy by replicating certain statistics of the random atomic lattice in the finite volume as accurately as possible. In the present work, we provide a rigorous justification for a variant of this method in the framework of the Thomas–Fermi–von Weizsäcker (TFW) model. Our approach is based on a recent analysis of a related variance reduction method in stochastic homogenization of linear elliptic PDEs and the locality properties of the TFW model. Concerning the latter, we extend an exponential locality result by Nazar and Ortner to include point charges, a result that may be of independent interest.}, author = {Fischer, Julian L and Kniely, Michael}, issn = {13616544}, journal = {Nonlinearity}, number = {11}, pages = {5733--5772}, publisher = {IOP Publishing}, title = {{Variance reduction for effective energies of random lattices in the Thomas-Fermi-von Weizsäcker model}}, doi = {10.1088/1361-6544/ab9728}, volume = {33}, year = {2020}, } @article{8680, abstract = {Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type–specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning.}, author = {Tsai, Tony Y.-C. and Sikora, Mateusz K and Xia, Peng and Colak-Champollion, Tugba and Knaut, Holger and Heisenberg, Carl-Philipp J and Megason, Sean G.}, issn = {1095-9203}, journal = {Science}, keywords = {Multidisciplinary}, number = {6512}, pages = {113--116}, publisher = {American Association for the Advancement of Science}, title = {{An adhesion code ensures robust pattern formation during tissue morphogenesis}}, doi = {10.1126/science.aba6637}, volume = {370}, year = {2020}, } @article{8707, abstract = {Dynamic changes in the three-dimensional (3D) organization of chromatin are associated with central biological processes, such as transcription, replication and development. Therefore, the comprehensive identification and quantification of these changes is fundamental to understanding of evolutionary and regulatory mechanisms. Here, we present Comparison of Hi-C Experiments using Structural Similarity (CHESS), an algorithm for the comparison of chromatin contact maps and automatic differential feature extraction. We demonstrate the robustness of CHESS to experimental variability and showcase its biological applications on (1) interspecies comparisons of syntenic regions in human and mouse models; (2) intraspecies identification of conformational changes in Zelda-depleted Drosophila embryos; (3) patient-specific aberrant chromatin conformation in a diffuse large B-cell lymphoma sample; and (4) the systematic identification of chromatin contact differences in high-resolution Capture-C data. In summary, CHESS is a computationally efficient method for the comparison and classification of changes in chromatin contact data.}, author = { Galan, Silvia and Machnik, Nick N and Kruse, Kai and Díaz, Noelia and Marti-Renom, Marc A and Vaquerizas, Juan M}, issn = {15461718}, journal = {Nature Genetics}, pages = {1247--1255}, publisher = {Springer Nature}, title = {{CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction}}, doi = {10.1038/s41588-020-00712-y}, volume = {52}, year = {2020}, } @article{8679, abstract = {A central goal of artificial intelligence in high-stakes decision-making applications is to design a single algorithm that simultaneously expresses generalizability by learning coherent representations of their world and interpretable explanations of its dynamics. Here, we combine brain-inspired neural computation principles and scalable deep learning architectures to design compact neural controllers for task-specific compartments of a full-stack autonomous vehicle control system. We discover that a single algorithm with 19 control neurons, connecting 32 encapsulated input features to outputs by 253 synapses, learns to map high-dimensional inputs into steering commands. This system shows superior generalizability, interpretability and robustness compared with orders-of-magnitude larger black-box learning systems. The obtained neural agents enable high-fidelity autonomy for task-specific parts of a complex autonomous system.}, author = {Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu}, issn = {2522-5839}, journal = {Nature Machine Intelligence}, pages = {642--652}, publisher = {Springer Nature}, title = {{Neural circuit policies enabling auditable autonomy}}, doi = {10.1038/s42256-020-00237-3}, volume = {2}, year = {2020}, } @article{8670, abstract = {The α–z Rényi relative entropies are a two-parameter family of Rényi relative entropies that are quantum generalizations of the classical α-Rényi relative entropies. In the work [Adv. Math. 365, 107053 (2020)], we decided the full range of (α, z) for which the data processing inequality (DPI) is valid. In this paper, we give algebraic conditions for the equality in DPI. For the full range of parameters (α, z), we give necessary conditions and sufficient conditions. For most parameters, we give equivalent conditions. This generalizes and strengthens the results of Leditzky et al. [Lett. Math. Phys. 107, 61–80 (2017)].}, author = {Zhang, Haonan}, issn = {00222488}, journal = {Journal of Mathematical Physics}, number = {10}, publisher = {AIP Publishing}, title = {{Equality conditions of data processing inequality for α-z Rényi relative entropies}}, doi = {10.1063/5.0022787}, volume = {61}, year = {2020}, } @article{8698, abstract = {The brain represents and reasons probabilistically about complex stimuli and motor actions using a noisy, spike-based neural code. A key building block for such neural computations, as well as the basis for supervised and unsupervised learning, is the ability to estimate the surprise or likelihood of incoming high-dimensional neural activity patterns. Despite progress in statistical modeling of neural responses and deep learning, current approaches either do not scale to large neural populations or cannot be implemented using biologically realistic mechanisms. Inspired by the sparse and random connectivity of real neuronal circuits, we present a model for neural codes that accurately estimates the likelihood of individual spiking patterns and has a straightforward, scalable, efficient, learnable, and realistic neural implementation. This model’s performance on simultaneously recorded spiking activity of >100 neurons in the monkey visual and prefrontal cortices is comparable with or better than that of state-of-the-art models. Importantly, the model can be learned using a small number of samples and using a local learning rule that utilizes noise intrinsic to neural circuits. Slower, structural changes in random connectivity, consistent with rewiring and pruning processes, further improve the efficiency and sparseness of the resulting neural representations. Our results merge insights from neuroanatomy, machine learning, and theoretical neuroscience to suggest random sparse connectivity as a key design principle for neuronal computation.}, author = {Maoz, Ori and Tkačik, Gašper and Esteki, Mohamad Saleh and Kiani, Roozbeh and Schneidman, Elad}, issn = {10916490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {40}, pages = {25066--25073}, publisher = {National Academy of Sciences}, title = {{Learning probabilistic neural representations with randomly connected circuits}}, doi = {10.1073/pnas.1912804117}, volume = {117}, year = {2020}, } @inproceedings{8704, abstract = {Traditional robotic control suits require profound task-specific knowledge for designing, building and testing control software. The rise of Deep Learning has enabled end-to-end solutions to be learned entirely from data, requiring minimal knowledge about the application area. We design a learning scheme to train end-to-end linear dynamical systems (LDS)s by gradient descent in imitation learning robotic domains. We introduce a new regularization loss component together with a learning algorithm that improves the stability of the learned autonomous system, by forcing the eigenvalues of the internal state updates of an LDS to be negative reals. We evaluate our approach on a series of real-life and simulated robotic experiments, in comparison to linear and nonlinear Recurrent Neural Network (RNN) architectures. Our results show that our stabilizing method significantly improves test performance of LDS, enabling such linear models to match the performance of contemporary nonlinear RNN architectures. A video of the obstacle avoidance performance of our method on a mobile robot, in unseen environments, compared to other methods can be viewed at https://youtu.be/mhEsCoNao5E.}, author = {Lechner, Mathias and Hasani, Ramin and Rus, Daniela and Grosu, Radu}, booktitle = {Proceedings - IEEE International Conference on Robotics and Automation}, isbn = {9781728173955}, issn = {10504729}, location = {Paris, France}, pages = {5446--5452}, publisher = {IEEE}, title = {{Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme}}, doi = {10.1109/ICRA40945.2020.9196608}, year = {2020}, } @article{8700, abstract = {Translation termination is a finishing step of protein biosynthesis. The significant role in this process belongs not only to protein factors of translation termination but also to the nearest nucleotide environment of stop codons. There are numerous descriptions of stop codons readthrough, which is due to specific nucleotide sequences behind them. However, represented data are segmental and don’t explain the mechanism of the nucleotide context influence on translation termination. It is well known that stop codon UAA usage is preferential for A/T-rich genes, and UAG, UGA—for G/C-rich genes, which is related to an expression level of these genes. We investigated the connection between a frequency of nucleotides occurrence in 3' area of stop codons in the human genome and their influence on translation termination efficiency. We found that 3' context motif, which is cognate to the sequence of a stop codon, stimulates translation termination. At the same time, the nucleotide composition of 3' sequence that differs from stop codon, decreases translation termination efficiency.}, author = {Sokolova, E. E. and Vlasov, Petr and Egorova, T. V. and Shuvalov, A. V. and Alkalaeva, E. Z.}, issn = {16083245}, journal = {Molecular Biology}, number = {5}, pages = {739--748}, publisher = {Springer Nature}, title = {{The influence of A/G composition of 3' stop codon contexts on translation termination efficiency in eukaryotes}}, doi = {10.1134/S0026893320050088}, volume = {54}, year = {2020}, } @article{8701, abstract = {Translation termination is a finishing step of protein biosynthesis. The significant role in this process belongs not only to protein factors of translation termination but also to the nearest nucleotide environment of stop codons. There are numerous descriptions of stop codons readthrough, which is due to specific nucleotide sequences behind them. However, represented data are segmental and don’t explain the mechanism of the nucleotide context influence on translation termination. It is well known that stop codon UAA usage is preferential for A/T-rich genes, and UAG, UGA—for G/C-rich genes, which is related to an expression level of these genes. We investigated the connection between a frequency of nucleotides occurrence in 3' area of stop codons in the human genome and their influence on translation termination efficiency. We found that 3' context motif, which is cognate to the sequence of a stop codon, stimulates translation termination. At the same time, the nucleotide composition of 3' sequence that differs from stop codon, decreases translation termination efficiency.}, author = {Sokolova, E. E. and Vlasov, Petr and Egorova, T. V. and Shuvalov, A. V. and Alkalaeva, E. Z.}, issn = {00268984}, journal = {Molekuliarnaia biologiia}, number = {5}, pages = {837--848}, publisher = {Russian Academy of Sciences}, title = {{The influence of A/G composition of 3' stop codon contexts on translation termination efficiency in eukaryotes}}, doi = {10.31857/S0026898420050080}, volume = {54}, year = {2020}, } @unpublished{14096, abstract = {A binary neutron star merger has been observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12M⊙ red supergiant and a 1.4M⊙ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and final orbital separations of af≈1.3-5.1R⊙ depending on the simulation and criterion, leading to binary neutron stars that can merge within a Hubble time. We find αCE-equivalent efficiencies of ≈0.1-2.7 depending on the simulation and criterion, but this may be specific for these extended progenitors. We fully resolve the core of the star to ≲0.005R⊙ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources.}, author = {Jamie A. P. Law-Smith, Jamie A. P. Law-Smith and Everson, Rosa Wallace and Enrico Ramirez-Ruiz, Enrico Ramirez-Ruiz and Mink, Selma E. de and Son, Lieke A. C. van and Götberg, Ylva Louise Linsdotter and Zellmann, Stefan and Alejandro Vigna-Gómez, Alejandro Vigna-Gómez and Renzo, Mathieu and Wu, Samantha and Schrøder, Sophie L. and Foley, Ryan J. and Tenley Hutchinson-Smith, Tenley Hutchinson-Smith}, booktitle = {arXiv}, title = {{Successful common envelope ejection and binary neutron star formation in 3D hydrodynamics}}, doi = {10.48550/arXiv.2011.06630}, year = {2020}, } @article{8699, abstract = {In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling.}, author = {Paris, Eugenio and Tseng, Yi and Paerschke, Ekaterina and Zhang, Wenliang and Upton, Mary H and Efimenko, Anna and Rolfs, Katharina and McNally, Daniel E and Maurel, Laura and Naamneh, Muntaser and Caputo, Marco and Strocov, Vladimir N and Wang, Zhiming and Casa, Diego and Schneider, Christof W and Pomjakushina, Ekaterina and Wohlfeld, Krzysztof and Radovic, Milan and Schmitt, Thorsten}, issn = {10916490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {40}, pages = {24764--24770}, publisher = {National Academy of Sciences}, title = {{Strain engineering of the charge and spin-orbital interactions in Sr2IrO4}}, doi = {10.1073/pnas.2012043117}, volume = {117}, year = {2020}, } @article{8737, abstract = {Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions.}, author = {Kampjut, Domen and Sazanov, Leonid A}, issn = {10959203}, journal = {Science}, number = {6516}, publisher = {American Association for the Advancement of Science}, title = {{The coupling mechanism of mammalian respiratory complex I}}, doi = {10.1126/science.abc4209}, volume = {370}, year = {2020}, } @inproceedings{8722, abstract = {Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD) achieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for decentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show that eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy.}, author = {Li, Shigang and Tal Ben-Nun, Tal Ben-Nun and Girolamo, Salvatore Di and Alistarh, Dan-Adrian and Hoefler, Torsten}, booktitle = {Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming}, location = {San Diego, CA, United States}, pages = {45--61}, publisher = {Association for Computing Machinery}, title = {{Taming unbalanced training workloads in deep learning with partial collective operations}}, doi = {10.1145/3332466.3374528}, year = {2020}, } @article{8744, abstract = {Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.}, author = {Schulte, Linda and Mao, Jiafei and Reitz, Julian and Sreeramulu, Sridhar and Kudlinzki, Denis and Hodirnau, Victor-Valentin and Meier-Credo, Jakob and Saxena, Krishna and Buhr, Florian and Langer, Julian D. and Blackledge, Martin and Frangakis, Achilleas S. and Glaubitz, Clemens and Schwalbe, Harald}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Cysteine oxidation and disulfide formation in the ribosomal exit tunnel}}, doi = {10.1038/s41467-020-19372-x}, volume = {11}, year = {2020}, } @article{8747, abstract = {Appropriately designed nanocomposites allow improving the thermoelectric performance by several mechanisms, including phonon scattering, modulation doping and energy filtering, while additionally promoting better mechanical properties than those of crystalline materials. Here, a strategy for producing Bi2Te3–Cu2xTe nanocomposites based on the consolidation of heterostructured nanoparticles is described and the thermoelectric properties of the obtained materials are investigated. We first detail a two-step solution-based process to produce Bi2Te3–Cu2xTe heteronanostructures, based on the growth of Cu2xTe nanocrystals on the surface of Bi2Te3 nanowires. We characterize the structural and chemical properties of the synthesized nanostructures and of the nanocomposites produced by hot-pressing the particles at moderate temperatures. Besides, the transport properties of the nanocomposites are investigated as a function of the amount of Cu introduced. Overall, the presence of Cu decreases the material thermal conductivity through promotion of phonon scattering, modulates the charge carrier concentration through electron spillover, and increases the Seebeck coefficient through filtering of charge carriers at energy barriers. These effects result in an improvement of over 50% of the thermoelectric figure of merit of Bi2Te3.}, author = {Zhang, Yu and Liu, Yu and Calcabrini, Mariano and Xing, Congcong and Han, Xu and Arbiol, Jordi and Cadavid, Doris and Ibáñez, Maria and Cabot, Andreu}, journal = {Journal of Materials Chemistry C}, number = {40}, pages = {14092--14099}, publisher = {Royal Society of Chemistry}, title = {{Bismuth telluride-copper telluride nanocomposites from heterostructured building blocks}}, doi = {10.1039/D0TC02182B}, volume = {8}, year = {2020}, } @unpublished{14095, abstract = {The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.}, author = {Gaudi, B. Scott and Seager, Sara and Mennesson, Bertrand and Kiessling, Alina and Warfield, Keith and Cahoy, Kerri and Clarke, John T. and Shawn Domagal-Goldman, Shawn Domagal-Goldman and Feinberg, Lee and Guyon, Olivier and Kasdin, Jeremy and Mawet, Dimitri and Plavchan, Peter and Robinson, Tyler and Rogers, Leslie and Scowen, Paul and Somerville, Rachel and Stapelfeldt, Karl and Stark, Christopher and Stern, Daniel and Turnbull, Margaret and Amini, Rashied and Kuan, Gary and Martin, Stefan and Morgan, Rhonda and Redding, David and Stahl, H. Philip and Webb, Ryan and Oscar Alvarez-Salazar, Oscar Alvarez-Salazar and Arnold, William L. and Arya, Manan and Balasubramanian, Bala and Baysinger, Mike and Bell, Ray and Below, Chris and Benson, Jonathan and Blais, Lindsey and Booth, Jeff and Bourgeois, Robert and Bradford, Case and Brewer, Alden and Brooks, Thomas and Cady, Eric and Caldwell, Mary and Calvet, Rob and Carr, Steven and Chan, Derek and Cormarkovic, Velibor and Coste, Keith and Cox, Charlie and Danner, Rolf and Davis, Jacqueline and Dewell, Larry and Dorsett, Lisa and Dunn, Daniel and East, Matthew and Effinger, Michael and Eng, Ron and Freebury, Greg and Garcia, Jay and Gaskin, Jonathan and Greene, Suzan and Hennessy, John and Hilgemann, Evan and Hood, Brad and Holota, Wolfgang and Howe, Scott and Huang, Pei and Hull, Tony and Hunt, Ron and Hurd, Kevin and Johnson, Sandra and Kissil, Andrew and Knight, Brent and Kolenz, Daniel and Kraus, Oliver and Krist, John and Li, Mary and Lisman, Doug and Mandic, Milan and Mann, John and Marchen, Luis and Colleen Marrese-Reading, Colleen Marrese-Reading and McCready, Jonathan and McGown, Jim and Missun, Jessica and Miyaguchi, Andrew and Moore, Bradley and Nemati, Bijan and Nikzad, Shouleh and Nissen, Joel and Novicki, Megan and Perrine, Todd and Pineda, Claudia and Polanco, Otto and Putnam, Dustin and Qureshi, Atif and Richards, Michael and Riggs, A. J. Eldorado and Rodgers, Michael and Rud, Mike and Saini, Navtej and Scalisi, Dan and Scharf, Dan and Schulz, Kevin and Serabyn, Gene and Sigrist, Norbert and Sikkia, Glory and Singleton, Andrew and Shaklan, Stuart and Smith, Scott and Southerd, Bart and Stahl, Mark and Steeves, John and Sturges, Brian and Sullivan, Chris and Tang, Hao and Taras, Neil and Tesch, Jonathan and Therrell, Melissa and Tseng, Howard and Valente, Marty and Buren, David Van and Villalvazo, Juan and Warwick, Steve and Webb, David and Westerhoff, Thomas and Wofford, Rush and Wu, Gordon and Woo, Jahning and Wood, Milana and Ziemer, John and Arney, Giada and Anderson, Jay and Jesús Maíz-Apellániz, Jesús Maíz-Apellániz and Bartlett, James and Belikov, Ruslan and Bendek, Eduardo and Cenko, Brad and Douglas, Ewan and Dulz, Shannon and Evans, Chris and Faramaz, Virginie and Feng, Y. Katherina and Ferguson, Harry and Follette, Kate and Ford, Saavik and García, Miriam and Geha, Marla and Gelino, Dawn and Götberg, Ylva Louise Linsdotter and Hildebrandt, Sergi and Hu, Renyu and Jahnke, Knud and Kennedy, Grant and Kreidberg, Laura and Isella, Andrea and Lopez, Eric and Marchis, Franck and Macri, Lucas and Marley, Mark and Matzko, William and Mazoyer, Johan and McCandliss, Stephan and Meshkat, Tiffany and Mordasini, Christoph and Morris, Patrick and Nielsen, Eric and Newman, Patrick and Petigura, Erik and Postman, Marc and Reines, Amy and Roberge, Aki and Roederer, Ian and Ruane, Garreth and Schwieterman, Edouard and Sirbu, Dan and Spalding, Christopher and Teplitz, Harry and Tumlinson, Jason and Turner, Neal and Werk, Jessica and Wofford, Aida and Wyatt, Mark and Young, Amber and Zellem, Rob}, booktitle = {arXiv}, title = {{The habitable exoplanet observatory (HabEx) mission concept study final report}}, doi = {10.48550/arXiv.2001.06683}, year = {2020}, } @article{8767, abstract = {Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring.}, author = {Kaveh, Kamran and McAvoy, Alex and Chatterjee, Krishnendu and Nowak, Martin A.}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience}, number = {11}, publisher = {Public Library of Science}, title = {{The Moran process on 2-chromatic graphs}}, doi = {10.1371/journal.pcbi.1008402}, volume = {16}, year = {2020}, } @inproceedings{8750, abstract = {Efficiently handling time-triggered and possibly nondeterministic switches for hybrid systems reachability is a challenging task. In this paper we present an approach based on conservative set-based enclosure of the dynamics that can handle systems with uncertain parameters and inputs, where the uncertainties are bound to given intervals. The method is evaluated on the plant model of an experimental electro-mechanical braking system with periodic controller. In this model, the fast-switching controller dynamics requires simulation time scales of the order of nanoseconds. Accurate set-based computations for relatively large time horizons are known to be expensive. However, by appropriately decoupling the time variable with respect to the spatial variables, and enclosing the uncertain parameters using interval matrix maps acting on zonotopes, we show that the computation time can be lowered to 5000 times faster with respect to previous works. This is a step forward in formal verification of hybrid systems because reduced run-times allow engineers to introduce more expressiveness in their models with a relatively inexpensive computational cost.}, author = {Forets, Marcelo and Freire, Daniel and Schilling, Christian}, booktitle = {18th ACM-IEEE International Conference on Formal Methods and Models for System Design}, isbn = {9781728191485}, location = {Virtual Conference}, publisher = {IEEE}, title = {{Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions}}, doi = {10.1109/MEMOCODE51338.2020.9314994}, year = {2020}, } @article{8758, abstract = {We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.}, author = {Maas, Jan and Mielke, Alexander}, issn = {15729613}, journal = {Journal of Statistical Physics}, number = {6}, pages = {2257--2303}, publisher = {Springer Nature}, title = {{Modeling of chemical reaction systems with detailed balance using gradient structures}}, doi = {10.1007/s10955-020-02663-4}, volume = {181}, year = {2020}, } @misc{13070, abstract = {This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request.}, author = {Peruzzo, Matilda and Trioni, Andrea and Hassani, Farid and Zemlicka, Martin and Fink, Johannes M}, publisher = {Zenodo}, title = {{Surpassing the resistance quantum with a geometric superinductor}}, doi = {10.5281/ZENODO.4052882}, year = {2020}, } @article{8787, abstract = {Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets.}, author = {Nicolai, Leo and Schiefelbein, Karin and Lipsky, Silvia and Leunig, Alexander and Hoffknecht, Marie and Pekayvaz, Kami and Raude, Ben and Marx, Charlotte and Ehrlich, Andreas and Pircher, Joachim and Zhang, Zhe and Saleh, Inas and Marel, Anna-Kristina and Löf, Achim and Petzold, Tobias and Lorenz, Michael and Stark, Konstantin and Pick, Robert and Rosenberger, Gerhild and Weckbach, Ludwig and Uhl, Bernd and Xia, Sheng and Reichel, Christoph Andreas and Walzog, Barbara and Schulz, Christian and Zheden, Vanessa and Bender, Markus and Li, Rong and Massberg, Steffen and Gärtner, Florian R}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Vascular surveillance by haptotactic blood platelets in inflammation and infection}}, doi = {10.1038/s41467-020-19515-0}, volume = {11}, year = {2020}, } @article{8789, abstract = {Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty.}, author = {Kleshnina, Maria and Streipert, Sabrina and Filar, Jerzy and Chatterjee, Krishnendu}, issn = {22277390}, journal = {Mathematics}, number = {11}, publisher = {MDPI}, title = {{Prioritised learning in snowdrift-type games}}, doi = {10.3390/math8111945}, volume = {8}, year = {2020}, } @inproceedings{8287, abstract = {Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.}, author = {Bogomolov, Sergiy and Forets, Marcelo and Frehse, Goran and Potomkin, Kostiantyn and Schilling, Christian}, booktitle = {Proceedings of the International Conference on Embedded Software}, keywords = {reachability, hybrid systems, decomposition}, location = {Virtual }, title = {{Reachability analysis of linear hybrid systems via block decomposition}}, year = {2020}, } @article{8788, abstract = {We consider a real-time setting where an environment releases sequences of firm-deadline tasks, and an online scheduler chooses on-the-fly the ones to execute on a single processor so as to maximize cumulated utility. The competitive ratio is a well-known performance measure for the scheduler: it gives the worst-case ratio, among all possible choices for the environment, of the cumulated utility of the online scheduler versus an offline scheduler that knows these choices in advance. Traditionally, competitive analysis is performed by hand, while automated techniques are rare and only handle static environments with independent tasks. We present a quantitative-verification framework for precedence-aware competitive analysis, where task releases may depend on preceding scheduling choices, i.e., the environment can respond to scheduling decisions dynamically . We consider two general classes of precedences: 1) follower precedences force the release of a dependent task upon the completion of a set of precursor tasks, while and 2) pairing precedences modify the characteristics of a dependent task provided the completion of a set of precursor tasks. Precedences make competitive analysis challenging, as the online and offline schedulers operate on diverging sequences. We make a formal presentation of our framework, and use a GPU-based implementation to analyze ten well-known schedulers on precedence-based application examples taken from the existing literature: 1) a handshake protocol (HP); 2) network packet-switching; 3) query scheduling (QS); and 4) a sporadic-interrupt setting. Our experimental results show that precedences and task parameters can vary drastically the best scheduler. Our framework thus supports application designers in choosing the best scheduler among a given set automatically.}, author = {Pavlogiannis, Andreas and Schaumberger, Nico and Schmid, Ulrich and Chatterjee, Krishnendu}, issn = {19374151}, journal = {IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems}, number = {11}, pages = {3981--3992}, publisher = {IEEE}, title = {{Precedence-aware automated competitive analysis of real-time scheduling}}, doi = {10.1109/TCAD.2020.3012803}, volume = {39}, year = {2020}, } @article{8790, abstract = {Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this article, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.}, author = {Bogomolov, Sergiy and Forets, Marcelo and Frehse, Goran and Potomkin, Kostiantyn and Schilling, Christian}, issn = {19374151}, journal = {IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems}, number = {11}, pages = {4018--4029}, publisher = {IEEE}, title = {{Reachability analysis of linear hybrid systems via block decomposition}}, doi = {10.1109/TCAD.2020.3012859}, volume = {39}, year = {2020}, } @article{8924, abstract = {Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.}, author = {Nibau, Candida and Dadarou, Despoina and Kargios, Nestoras and Mallioura, Areti and Fernandez-Fuentes, Narcis and Cavallari, Nicola and Doonan, John H.}, issn = {1664-462X}, journal = {Frontiers in Plant Science}, publisher = {Frontiers}, title = {{A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis}}, doi = {10.3389/fpls.2020.586870}, volume = {11}, year = {2020}, } @article{8926, abstract = {Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant-free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.}, author = {Irtem, Erdem and Arenas Esteban, Daniel and Duarte, Miguel and Choukroun, Daniel and Lee, Seungho and Ibáñez, Maria and Bals, Sara and Breugelmans, Tom}, issn = {21555435}, journal = {ACS Catalysis}, number = {22}, pages = {13468--13478}, publisher = {American Chemical Society}, title = {{Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction}}, doi = {10.1021/acscatal.0c03210}, volume = {10}, year = {2020}, } @article{8944, abstract = {Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field 𝐵𝑐2, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At 𝐵𝑐2 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above 𝐵𝑐2.}, author = {Zemlicka, Martin and Kopčík, M. and Szabó, P. and Samuely, T. and Kačmarčík, J. and Neilinger, P. and Grajcar, M. and Samuely, P.}, issn = {24699969}, journal = {Physical Review B}, number = {18}, publisher = {American Physical Society}, title = {{Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field}}, doi = {10.1103/PhysRevB.102.180508}, volume = {102}, year = {2020}, } @article{8955, abstract = {Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies.}, author = {Rizzo, Rossella and Zhang, Xiyun and Wang, Jilin W.J.L. and Lombardi, Fabrizio and Ivanov, Plamen Ch}, issn = {1664042X}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, title = {{Network physiology of cortico–muscular interactions}}, doi = {10.3389/fphys.2020.558070}, volume = {11}, year = {2020}, } @article{8949, abstract = {Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.}, author = {Zhang, Xuying and Mennicke, Christine V. and Xiao, Guanxi and Beattie, Robert J and Haider, Mansoor and Hippenmeyer, Simon and Ghashghaei, H. Troy}, issn = {2073-4409}, journal = {Cells}, number = {12}, publisher = {MDPI}, title = {{Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage}}, doi = {10.3390/cells9122662}, volume = {9}, year = {2020}, } @article{8971, abstract = {The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.}, author = {Fäßler, Florian and Dimchev, Georgi A and Hodirnau, Victor-Valentin and Wan, William and Schur, Florian KM}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction}}, doi = {10.1038/s41467-020-20286-x}, volume = {11}, year = {2020}, } @inproceedings{8987, abstract = {Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so. Vaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that (security) Provably prevents replay and (if location data is available) relay attacks. (privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened. (efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication). Towards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message.}, author = {Pietrzak, Krzysztof Z}, booktitle = {Progress in Cryptology}, isbn = {9783030652760}, issn = {16113349}, location = {Bangalore, India}, pages = {3--15}, publisher = {Springer Nature}, title = {{Delayed authentication: Preventing replay and relay attacks in private contact tracing}}, doi = {10.1007/978-3-030-65277-7_1}, volume = {12578}, year = {2020}, } @article{8957, abstract = {Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.}, author = {Godard, Benoit G and Dumollard, Rémi and Munro, Edwin and Chenevert, Janet and Hebras, Céline and Mcdougall, Alex and Heisenberg, Carl-Philipp J}, issn = {18781551}, journal = {Developmental Cell}, number = {6}, pages = {695--706}, publisher = {Elsevier}, title = {{Apical relaxation during mitotic rounding promotes tension-oriented cell division}}, doi = {10.1016/j.devcel.2020.10.016}, volume = {55}, year = {2020}, } @article{9000, abstract = {In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.}, author = {Grah, Rok and Zoller, Benjamin and Tkačik, Gašper}, issn = {10916490}, journal = {PNAS}, number = {50}, pages = {31614--31622}, publisher = {National Academy of Sciences}, title = {{Nonequilibrium models of optimal enhancer function}}, doi = {10.1073/pnas.2006731117}, volume = {117}, year = {2020}, } @article{7910, abstract = {Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.}, author = {Barzanjeh, Shabir and Pirandola, S. and Vitali, D and Fink, Johannes M}, issn = {23752548}, journal = {Science Advances}, number = {19}, publisher = {AAAS}, title = {{Microwave quantum illumination using a digital receiver}}, doi = {10.1126/sciadv.abb0451}, volume = {6}, year = {2020}, } @inproceedings{9001, abstract = {Quantum illumination is a sensing technique that employs entangled signal-idler beams to improve the detection efficiency of low-reflectivity objects in environments with large thermal noise. The advantage over classical strategies is evident at low signal brightness, a feature which could make the protocol an ideal prototype for non-invasive scanning or low-power short-range radar. Here we experimentally investigate the concept of quantum illumination at microwave frequencies, by generating entangled fields using a Josephson parametric converter which are then amplified to illuminate a room-temperature object at a distance of 1 meter. Starting from experimental data, we simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.}, author = {Barzanjeh, Shabir and Pirandola, Stefano and Vitali, David and Fink, Johannes M}, booktitle = {IEEE National Radar Conference - Proceedings}, isbn = {9781728189420}, issn = {1097-5659}, location = {Florence, Italy}, number = {9}, publisher = {IEEE}, title = {{Microwave quantum illumination with a digital phase-conjugated receiver}}, doi = {10.1109/RadarConf2043947.2020.9266397}, volume = {2020}, year = {2020}, } @article{9007, abstract = {Motivated by a recent question of Peyre, we apply the Hardy–Littlewood circle method to count “sufficiently free” rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rationals.}, author = {Browning, Timothy D and Sawin, Will}, issn = {14208946}, journal = {Commentarii Mathematici Helvetici}, number = {4}, pages = {635--659}, publisher = {European Mathematical Society}, title = {{Free rational points on smooth hypersurfaces}}, doi = {10.4171/CMH/499}, volume = {95}, year = {2020}, } @article{9114, abstract = {Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion efficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication.}, author = {Hease, William J and Rueda Sanchez, Alfredo R and Sahu, Rishabh and Wulf, Matthias and Arnold, Georg M and Schwefel, Harald G.L. and Fink, Johannes M}, issn = {2691-3399}, journal = {PRX Quantum}, number = {2}, publisher = {American Physical Society}, title = {{Bidirectional electro-optic wavelength conversion in the quantum ground state}}, doi = {10.1103/prxquantum.1.020315}, volume = {1}, year = {2020}, } @article{9194, abstract = {Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.}, author = {Lauk, Nikolai and Sinclair, Neil and Barzanjeh, Shabir and Covey, Jacob P and Saffman, Mark and Spiropulu, Maria and Simon, Christoph}, issn = {2058-9565}, journal = {Quantum Science and Technology}, number = {2}, publisher = {IOP Publishing}, title = {{Perspectives on quantum transduction}}, doi = {10.1088/2058-9565/ab788a}, volume = {5}, year = {2020}, } @article{9039, abstract = {We give a short and self-contained proof for rates of convergence of the Allen--Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen--Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.}, author = {Fischer, Julian L and Laux, Tim and Simon, Theresa M.}, issn = {10957154}, journal = {SIAM Journal on Mathematical Analysis}, number = {6}, pages = {6222--6233}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies}}, doi = {10.1137/20M1322182}, volume = {52}, year = {2020}, } @article{9104, abstract = {We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5].}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, issn = {15658538}, journal = {Journal d'Analyse Mathematique}, pages = {323--348}, publisher = {Springer Nature}, title = {{On the support of the free additive convolution}}, doi = {10.1007/s11854-020-0135-2}, volume = {142}, year = {2020}, } @misc{13071, abstract = {This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request.}, author = {Hease, William J and Rueda Sanchez, Alfredo R and Sahu, Rishabh and Wulf, Matthias and Arnold, Georg M and Schwefel, Harald and Fink, Johannes M}, publisher = {Zenodo}, title = {{Bidirectional electro-optic wavelength conversion in the quantum ground state}}, doi = {10.5281/ZENODO.4266025}, year = {2020}, } @article{9195, abstract = {Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed.}, author = {Lambert, Nicholas J. and Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Schwefel, Harald G. L.}, issn = {2511-9044}, journal = {Advanced Quantum Technologies}, number = {1}, publisher = {Wiley}, title = {{Coherent conversion between microwave and optical photons - An overview of physical implementations}}, doi = {10.1002/qute.201900077}, volume = {3}, year = {2020}, } @article{9011, abstract = {Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees.}, author = {Kokoris Kogias, Eleftherios and Alp, Enis Ceyhun and Gasser, Linus and Jovanovic, Philipp and Syta, Ewa and Ford, Bryan}, issn = {2150-8097}, journal = {Proceedings of the VLDB Endowment}, number = {4}, pages = {586--599}, publisher = {Association for Computing Machinery}, title = {{CALYPSO: Private data management for decentralized ledgers}}, doi = {10.14778/3436905.3436917}, volume = {14}, year = {2020}, } @article{8308, abstract = {Many-body localization provides a mechanism to avoid thermalization in isolated interacting quantum systems. The breakdown of thermalization may be complete, when all eigenstates in the many-body spectrum become localized, or partial, when the so-called many-body mobility edge separates localized and delocalized parts of the spectrum. Previously, De Roeck et al. [Phys. Rev. B 93, 014203 (2016)] suggested a possible instability of the many-body mobility edge in energy density. The local ergodic regions—so-called “bubbles”—resonantly spread throughout the system, leading to delocalization. In order to study such instability mechanism, in this work we design a model featuring many-body mobility edge in particle density: the states at small particle density are localized, while increasing the density of particles leads to delocalization. Using numerical simulations with matrix product states, we demonstrate the stability of many-body localization with respect to small bubbles in large dilute systems for experimentally relevant timescales. In addition, we demonstrate that processes where the bubble spreads are favored over processes that lead to resonant tunneling, suggesting a possible mechanism behind the observed stability of many-body mobility edge. We conclude by proposing experiments to probe particle density mobility edge in the Bose-Hubbard model.}, author = {Brighi, Pietro and Abanin, Dmitry A. and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {6}, publisher = {American Physical Society}, title = {{Stability of mobility edges in disordered interacting systems}}, doi = {10.1103/physrevb.102.060202}, volume = {102}, year = {2020}, } @article{10862, abstract = {We consider the sum of two large Hermitian matrices A and B with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptotically given by the free additive convolution of the laws of A and B as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescu's theorem. Our previous works [4], [5] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix.}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, issn = {0022-1236}, journal = {Journal of Functional Analysis}, keywords = {Analysis}, number = {7}, publisher = {Elsevier}, title = {{Spectral rigidity for addition of random matrices at the regular edge}}, doi = {10.1016/j.jfa.2020.108639}, volume = {279}, year = {2020}, } @article{10867, abstract = {In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {1687-0247}, journal = {International Mathematics Research Notices}, keywords = {General Mathematics}, number = {3}, pages = {669--697}, publisher = {Oxford University Press}, title = {{Waist of balls in hyperbolic and spherical spaces}}, doi = {10.1093/imrn/rny037}, volume = {2020}, year = {2020}, } @misc{9799, abstract = {Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.}, author = {Fraisse, Christelle and Welch, John J.}, publisher = {Royal Society of London}, title = {{Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes}}, doi = {10.6084/m9.figshare.7957469.v1}, year = {2020}, } @misc{9798, abstract = {Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.}, author = {Fraisse, Christelle and Welch, John J.}, publisher = {Royal Society of London}, title = {{Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes}}, doi = {10.6084/m9.figshare.7957472.v1}, year = {2020}, } @article{6488, abstract = {We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.}, author = {Cipolloni, Giorgio and Erdös, László}, issn = {20103271}, journal = {Random Matrices: Theory and Application}, number = {3}, publisher = {World Scientific Publishing}, title = {{Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices}}, doi = {10.1142/S2010326320500069}, volume = {9}, year = {2020}, } @article{8746, abstract = {Research in the field of colloidal semiconductor nanocrystals (NCs) has progressed tremendously, mostly because of their exceptional optoelectronic properties. Core@shell NCs, in which one or more inorganic layers overcoat individual NCs, recently received significant attention due to their remarkable optical characteristics. Reduced Auger recombination, suppressed blinking, and enhanced carrier multiplication are among the merits of core@shell NCs. Despite their importance in device development, the influence of the shell and the surface modification of the core@shell NC assemblies on the charge carrier transport remains a pertinent research objective. Type-II PbTe@PbS core@shell NCs, in which exclusive electron transport was demonstrated, still exhibit instability of their electron ransport. Here, we demonstrate the enhancement of electron transport and stability in PbTe@PbS core@shell NC assemblies using iodide as a surface passivating ligand. The combination of the PbS shelling and the use of the iodide ligand contributes to the addition of one mobile electron for each core@shell NC. Furthermore, both electron mobility and on/off current modulation ratio values of the core@shell NC field-effect transistor are steady with the usage of iodide. Excellent stability in these exclusively electron-transporting core@shell NCs paves the way for their utilization in electronic devices. }, author = {Miranti, Retno and Septianto, Ricky Dwi and Ibáñez, Maria and Kovalenko, Maksym V. and Matsushita, Nobuhiro and Iwasa, Yoshihiro and Bisri, Satria Zulkarnaen}, issn = {1077-3118}, journal = {Applied Physics Letters}, number = {17}, publisher = {AIP Publishing}, title = {{Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids}}, doi = {10.1063/5.0025965}, volume = {117}, year = {2020}, } @article{7985, abstract = {The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal–air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal–air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li–O2 cells but include Na–O2, K–O2, and Mg–O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li–O2 cells.}, author = {Kwak, WJ and Sharon, D and Xia, C and Kim, H and Johnson, LR and Bruce, PG and Nazar, LF and Sun, YK and Frimer, AA and Noked, M and Freunberger, Stefan Alexander and Aurbach, D}, issn = {1520-6890}, journal = {Chemical Reviews}, number = {14}, pages = {6626--6683}, publisher = {American Chemical Society}, title = {{Lithium-oxygen batteries and related systems: Potential, status, and future}}, doi = {10.1021/acs.chemrev.9b00609}, volume = {120}, year = {2020}, } @article{8721, abstract = {Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.}, author = {Hajny, Jakub and Prat, Tomas and Rydza, N and Rodriguez Solovey, Lesia and Tan, Shutang and Verstraeten, Inge and Domjan, David and Mazur, E and Smakowska-Luzan, E and Smet, W and Mor, E and Nolf, J and Yang, B and Grunewald, W and Molnar, Gergely and Belkhadir, Y and De Rybel, B and Friml, Jiří}, issn = {1095-9203}, journal = {Science}, number = {6516}, pages = {550--557}, publisher = {American Association for the Advancement of Science}, title = {{Receptor kinase module targets PIN-dependent auxin transport during canalization}}, doi = {10.1126/science.aba3178}, volume = {370}, year = {2020}, } @article{7968, abstract = {Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.}, author = {Ghazaryan, Areg and Paltiel, Yossi and Lemeshko, Mikhail}, issn = {1932-7455}, journal = {The Journal of Physical Chemistry C}, number = {21}, pages = {11716--11721}, publisher = {American Chemical Society}, title = {{Analytic model of chiral-induced spin selectivity}}, doi = {10.1021/acs.jpcc.0c02584}, volume = {124}, year = {2020}, } @article{10866, abstract = {Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons–hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management.}, author = {Duan, Jiahua and Capote-Robayna, Nathaniel and Taboada-Gutiérrez, Javier and Álvarez-Pérez, Gonzalo and Prieto Gonzalez, Ivan and Martín-Sánchez, Javier and Nikitin, Alexey Y. and Alonso-González, Pablo}, issn = {1530-6992}, journal = {Nano Letters}, keywords = {Mechanical Engineering, Condensed Matter Physics, General Materials Science, General Chemistry, Bioengineering}, number = {7}, pages = {5323--5329}, publisher = {American Chemical Society}, title = {{Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs}}, doi = {10.1021/acs.nanolett.0c01673}, volume = {20}, year = {2020}, } @article{8588, abstract = {Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)].}, author = {Hubert, C. and Cohen, K. and Ghazaryan, Areg and Lemeshko, Mikhail and Rapaport, R. and Santos, P. V.}, issn = {2469-9969}, journal = {Physical Review B}, number = {4}, publisher = {American Physical Society}, title = {{Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids}}, doi = {10.1103/physrevb.102.045307}, volume = {102}, year = {2020}, } @article{8769, abstract = {One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas.}, author = {Yakaboylu, Enderalp and Ghazaryan, Areg and Lundholm, D. and Rougerie, N. and Lemeshko, Mikhail and Seiringer, Robert}, issn = {2469-9969}, journal = {Physical Review B}, number = {14}, publisher = {American Physical Society}, title = {{Quantum impurity model for anyons}}, doi = {10.1103/physrevb.102.144109}, volume = {102}, year = {2020}, } @article{7971, abstract = {Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping. In this work, we first characterize the properties of new emergent Dirac points and show that the electric field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show that the symmetry breaking state interpolates between the fully gully polarized state that breaks C3 symmetry at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by outlining specific experimental predictions for the existence of such a symmetry-breaking state.}, author = {Rao, Peng and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {24}, publisher = {American Physical Society}, title = {{Gully quantum Hall ferromagnetism in biased trilayer graphene}}, doi = {10.1103/physrevb.101.245411}, volume = {101}, year = {2020}, } @article{8634, abstract = {In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent.}, author = {Suri, Balachandra and Kageorge, Logan and Grigoriev, Roman O. and Schatz, Michael F.}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {General Physics and Astronomy}, number = {6}, publisher = {American Physical Society}, title = {{Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits}}, doi = {10.1103/physrevlett.125.064501}, volume = {125}, year = {2020}, } @article{7949, abstract = {Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.}, author = {Smith, S and Zhu, S and Joos, L and Roberts, I and Nikonorova, N and Vu, LD and Stes, E and Cho, H and Larrieu, A and Xuan, W and Goodall, B and van de Cotte, B and Waite, JM and Rigal, A and R Harborough, SR and Persiau, G and Vanneste, S and Kirschner, GK and Vandermarliere, E and Martens, L and Stahl, Y and Audenaert, D and Friml, Jiří and Felix, G and Simon, R and Bennett, M and Bishopp, A and De Jaeger, G and Ljung, K and Kepinski, S and Robert, S and Nemhauser, J and Hwang, I and Gevaert, K and Beeckman, T and De Smet, I}, issn = {1535-9484}, journal = {Molecular & Cellular Proteomics}, number = {8}, pages = {1248--1262}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis}}, doi = {10.1074/mcp.ra119.001826}, volume = {19}, year = {2020}, } @article{7619, abstract = {Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development.}, author = {Zhang, Xixi and Adamowski, Maciek and Marhavá, Petra and Tan, Shutang and Zhang, Yuzhou and Rodriguez Solovey, Lesia and Zwiewka, Marta and Pukyšová, Vendula and Sánchez, Adrià Sans and Raxwal, Vivek Kumar and Hardtke, Christian S. and Nodzynski, Tomasz and Friml, Jiří}, issn = {1532-298X}, journal = {The Plant Cell}, number = {5}, pages = {1644--1664}, publisher = {American Society of Plant Biologists}, title = {{Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters}}, doi = {10.1105/tpc.19.00869}, volume = {32}, year = {2020}, } @article{8607, abstract = {Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants.}, author = {Liu, D and Kumar, R and LAN, Claus and Johnson, Alexander J and Siao, W and Vanhoutte, I and Wang, P and Bender, KW and Yperman, K and Martins, S and Zhao, X and Vert, G and Van Damme, D and Friml, Jiří and Russinova, E}, issn = {1532-298x}, journal = {Plant Cell}, number = {11}, pages = {3598--3612}, publisher = {American Society of Plant Biologists}, title = {{Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif}}, doi = {10.1105/tpc.20.00384}, volume = {32}, year = {2020}, } @article{7695, abstract = {The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.}, author = {Wang, J and Mylle, E and Johnson, Alexander J and Besbrugge, N and De Jaeger, G and Friml, Jiří and Pleskot, R and van Damme, D}, issn = {1532-2548}, journal = {Plant Physiology}, number = {3}, pages = {986--997}, publisher = {American Society of Plant Biologists}, title = {{High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits}}, doi = {10.1104/pp.20.00178}, volume = {183}, year = {2020}, } @article{9197, abstract = {In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve.}, author = {Avni, Guy and Ibsen-Jensen, Rasmus and Tkadlec, Josef}, isbn = {9781577358350}, issn = {2374-3468}, journal = {Proceedings of the AAAI Conference on Artificial Intelligence}, location = {New York, NY, United States}, number = {02}, pages = {1798--1805}, publisher = {Association for the Advancement of Artificial Intelligence}, title = {{All-pay bidding games on graphs}}, doi = {10.1609/aaai.v34i02.5546}, volume = {34}, year = {2020}, } @article{8142, abstract = {Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.}, author = {Montesinos López, Juan C and Abuzeineh, A and Kopf, Aglaja and Juanes Garcia, Alba and Ötvös, Krisztina and Petrášek, J and Sixt, Michael K and Benková, Eva}, issn = {1460-2075}, journal = {The Embo Journal}, number = {17}, publisher = {Embo Press}, title = {{Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage}}, doi = {10.15252/embj.2019104238}, volume = {39}, year = {2020}, } @article{8084, abstract = {Origin and functions of intermittent transitions among sleep stages, including brief awakenings and arousals, constitute a challenge to the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that the complex micro-architecture characterizing sleep on scales of seconds and minutes results from intrinsic non-equilibrium critical dynamics. We investigate θ- and δ-wave dynamics in control rats and in rats where the sleep-promoting ventrolateral preoptic nucleus (VLPO) is lesioned (male Sprague-Dawley rats). We demonstrate that bursts in θ and δ cortical rhythms exhibit complex temporal organization, with long-range correlations and robust duality of power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, features typical of non-equilibrium systems self-organizing at criticality. We show that such non-equilibrium behavior relates to anti-correlated coupling between θ- and δ-bursts, persists across a range of time scales, and is independent of the dominant physiologic state; indications of a basic principle in sleep regulation. Further, we find that VLPO lesions lead to a modulation of cortical dynamics resulting in altered dynamical parameters of θ- and δ-bursts and significant reduction in θ–δ coupling. Our empirical findings and model simulations demonstrate that θ–δ coupling is essential for the emerging non-equilibrium critical dynamics observed across the sleep–wake cycle, and indicate that VLPO neurons may have dual role for both sleep and arousal/brief wake activation. The uncovered critical behavior in sleep- and wake-related cortical rhythms indicates a mechanism essential for the micro-architecture of spontaneous sleep-stage and arousal transitions within a novel, non-homeostatic paradigm of sleep regulation.}, author = {Lombardi, Fabrizio and Gómez-Extremera, Manuel and Bernaola-Galván, Pedro and Vetrivelan, Ramalingam and Saper, Clifford B. and Scammell, Thomas E. and Ivanov, Plamen Ch.}, issn = {1529-2401}, journal = {Journal of Neuroscience}, number = {1}, pages = {171--190}, publisher = {Society for Neuroscience}, title = {{Critical dynamics and coupling in bursts of cortical rhythms indicate non-homeostatic mechanism for sleep-stage transitions and dual role of VLPO neurons in both sleep and wake}}, doi = {10.1523/jneurosci.1278-19.2019}, volume = {40}, year = {2020}, } @article{7650, abstract = {We consider a dilute, homogeneous Bose gas at positive temperature. The system is investigated in the Gross–Pitaevskii limit, where the scattering length a is so small that the interaction energy is of the same order of magnitude as the spectral gap of the Laplacian, and for temperatures that are comparable to the critical temperature of the ideal gas. We show that the difference between the specific free energy of the interacting system and the one of the ideal gas is to leading order given by 4πa(2ϱ2−ϱ20). Here ϱ denotes the density of the system and ϱ0 is the expected condensate density of the ideal gas. Additionally, we show that the one-particle density matrix of any approximate minimizer of the Gibbs free energy functional is to leading order given by the one of the ideal gas. This in particular proves Bose–Einstein condensation with critical temperature given by the one of the ideal gas to leading order. One key ingredient of our proof is a novel use of the Gibbs variational principle that goes hand in hand with the c-number substitution.}, author = {Deuchert, Andreas and Seiringer, Robert}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {6}, pages = {1217--1271}, publisher = {Springer Nature}, title = {{Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature}}, doi = {10.1007/s00205-020-01489-4}, volume = {236}, year = {2020}, } @article{8130, abstract = {We study the dynamics of a system of N interacting bosons in a disc-shaped trap, which is realised by an external potential that confines the bosons in one spatial dimension to an interval of length of order ε. The interaction is non-negative and scaled in such a way that its scattering length is of order ε/N, while its range is proportional to (ε/N)β with scaling parameter β∈(0,1]. We consider the simultaneous limit (N,ε)→(∞,0) and assume that the system initially exhibits Bose–Einstein condensation. We prove that condensation is preserved by the N-body dynamics, where the time-evolved condensate wave function is the solution of a two-dimensional non-linear equation. The strength of the non-linearity depends on the scaling parameter β. For β∈(0,1), we obtain a cubic defocusing non-linear Schrödinger equation, while the choice β=1 yields a Gross–Pitaevskii equation featuring the scattering length of the interaction. In both cases, the coupling parameter depends on the confining potential.}, author = {Bossmann, Lea}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {11}, pages = {541--606}, publisher = {Springer Nature}, title = {{Derivation of the 2d Gross–Pitaevskii equation for strongly confined 3d Bosons}}, doi = {10.1007/s00205-020-01548-w}, volume = {238}, year = {2020}, } @article{7235, abstract = {We consider the Fröhlich model of a polaron, and show that its effective mass diverges in thestrong coupling limit.}, author = {Lieb, Elliott H. and Seiringer, Robert}, issn = {1572-9613}, journal = {Journal of Statistical Physics}, pages = {23--33}, publisher = {Springer Nature}, title = {{Divergence of the effective mass of a polaron in the strong coupling limit}}, doi = {10.1007/s10955-019-02322-3}, volume = {180}, year = {2020}, } @inproceedings{7966, abstract = {For 1≤m≤n, we consider a natural m-out-of-n multi-instance scenario for a public-key encryption (PKE) scheme. An adversary, given n independent instances of PKE, wins if he breaks at least m out of the n instances. In this work, we are interested in the scaling factor of PKE schemes, SF, which measures how well the difficulty of breaking m out of the n instances scales in m. That is, a scaling factor SF=ℓ indicates that breaking m out of n instances is at least ℓ times more difficult than breaking one single instance. A PKE scheme with small scaling factor hence provides an ideal target for mass surveillance. In fact, the Logjam attack (CCS 2015) implicitly exploited, among other things, an almost constant scaling factor of ElGamal over finite fields (with shared group parameters). For Hashed ElGamal over elliptic curves, we use the generic group model to argue that the scaling factor depends on the scheme's granularity. In low granularity, meaning each public key contains its independent group parameter, the scheme has optimal scaling factor SF=m; In medium and high granularity, meaning all public keys share the same group parameter, the scheme still has a reasonable scaling factor SF=√m. Our findings underline that instantiating ElGamal over elliptic curves should be preferred to finite fields in a multi-instance scenario. As our main technical contribution, we derive new generic-group lower bounds of Ω(√(mp)) on the difficulty of solving both the m-out-of-n Gap Discrete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman problem over groups of prime order p, extending a recent result by Yun (EUROCRYPT 2015). We establish the lower bound by studying the hardness of a related computational problem which we call the search-by-hypersurface problem.}, author = {Auerbach, Benedikt and Giacon, Federico and Kiltz, Eike}, booktitle = {Advances in Cryptology – EUROCRYPT 2020}, isbn = {9783030457266}, issn = {1611-3349}, pages = {475--506}, publisher = {Springer Nature}, title = {{Everybody’s a target: Scalability in public-key encryption}}, doi = {10.1007/978-3-030-45727-3_16}, volume = {12107}, year = {2020}, } @inproceedings{8623, abstract = {We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers.}, author = {Henzinger, Thomas A and Sarac, Naci E}, booktitle = {Runtime Verification}, isbn = {9783030605070}, issn = {1611-3349}, location = {Los Angeles, CA, United States}, pages = {3--18}, publisher = {Springer Nature}, title = {{Monitorability under assumptions}}, doi = {10.1007/978-3-030-60508-7_1}, volume = {12399}, year = {2020}, } @inproceedings{8732, abstract = {A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP -complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ , it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A∪{Φσ} is again an arrangement of pseudocircles.}, author = {Arroyo Guevara, Alan M and Klute, Fabian and Parada, Irene and Seidel, Raimund and Vogtenhuber, Birgit and Wiedera, Tilo}, booktitle = {Graph-Theoretic Concepts in Computer Science}, isbn = {9783030604394}, issn = {1611-3349}, location = {Leeds, United Kingdom}, pages = {325--338}, publisher = {Springer Nature}, title = {{Inserting one edge into a simple drawing is hard}}, doi = {10.1007/978-3-030-60440-0_26}, volume = {12301}, year = {2020}, } @inbook{10865, abstract = {We introduce the notion of Witness Maps as a cryptographic notion of a proof system. A Unique Witness Map (UWM) deterministically maps all witnesses for an NP statement to a single representative witness, resulting in a computationally sound, deterministic-prover, non-interactive witness independent proof system. A relaxation of UWM, called Compact Witness Map (CWM), maps all the witnesses to a small number of witnesses, resulting in a “lossy” deterministic-prover, non-interactive proof-system. We also define a Dual Mode Witness Map (DMWM) which adds an “extractable” mode to a CWM. Our main construction is a DMWM for all NP relations, assuming sub-exponentially secure indistinguishability obfuscation ( iO ), along with standard cryptographic assumptions. The DMWM construction relies on a CWM and a new primitive called Cumulative All-Lossy-But-One Trapdoor Functions (C-ALBO-TDF), both of which are in turn instantiated based on iO and other primitives. Our instantiation of a CWM is in fact a UWM; in turn, we show that a UWM implies Witness Encryption. Along the way to constructing UWM and C-ALBO-TDF, we also construct, from standard assumptions, Puncturable Digital Signatures and a new primitive called Cumulative Lossy Trapdoor Functions (C-LTDF). The former improves up on a construction of Bellare et al. (Eurocrypt 2016), who relied on sub-exponentially secure iO and sub-exponentially secure OWF. As an application of our constructions, we show how to use a DMWM to construct the first leakage and tamper-resilient signatures with a deterministic signer, thereby solving a decade old open problem posed by Katz and Vaikunthanathan (Asiacrypt 2009), by Boyle, Segev and Wichs (Eurocrypt 2011), as well as by Faonio and Venturi (Asiacrypt 2016). Our construction achieves the optimal leakage rate of 1−o(1) .}, author = {Chakraborty, Suvradip and Prabhakaran, Manoj and Wichs, Daniel}, booktitle = {Public-Key Cryptography}, editor = {Kiayias, A}, isbn = {9783030453732}, issn = {1611-3349}, pages = {220--246}, publisher = {Springer Nature}, title = {{Witness maps and applications}}, doi = {10.1007/978-3-030-45374-9_8}, volume = {12110}, year = {2020}, } @article{7611, abstract = {We consider a system of N bosons in the limit N→∞, interacting through singular potentials. For initial data exhibiting Bose–Einstein condensation, the many-body time evolution is well approximated through a quadratic fluctuation dynamics around a cubic nonlinear Schrödinger equation of the condensate wave function. We show that these fluctuations satisfy a (multi-variate) central limit theorem.}, author = {Rademacher, Simone Anna Elvira}, issn = {1573-0530}, journal = {Letters in Mathematical Physics}, pages = {2143--2174}, publisher = {Springer Nature}, title = {{Central limit theorem for Bose gases interacting through singular potentials}}, doi = {10.1007/s11005-020-01286-w}, volume = {110}, year = {2020}, } @article{7236, abstract = {The biotic interactions hypothesis posits that biotic interactions are more important drivers of adaptation closer to the equator, evidenced by “stronger” contemporary interactions (e.g. greater interaction rates) and/or patterns of trait evolution consistent with a history of stronger interactions. Support for the hypothesis is mixed, but few studies span tropical and temperate regions while experimentally controlling for evolutionary history. Here, we integrate field observations and common garden experiments to quantify the relative importance of pollination and herbivory in a pair of tropical‐temperate congeneric perennial herbs. Phytolacca rivinoides and P. americana are pioneer species native to the Neotropics and the eastern USA, respectively. We compared plant‐pollinator and plant‐herbivore interactions between three tropical populations of P. rivinoides from Costa Rica and three temperate populations of P. americana from its northern range edge in Michigan and Ohio. For some metrics of interaction importance, we also included three subtropical populations of P. americana from its southern range edge in Florida. This approach confounds species and region but allows us, uniquely, to measure complementary proxies of interaction importance across a tropical‐temperate range in one system. To test the prediction that lower‐latitude plants are more reliant on insect pollinators, we quantified floral display and reward, insect visitation rates, and self‐pollination ability (autogamy). To test the prediction that lower‐latitude plants experience more herbivore pressure, we quantified herbivory rates, herbivore abundance, and leaf palatability. We found evidence supporting the biotic interactions hypothesis for most comparisons between P. rivinoides and north‐temperate P. americana (floral display, insect visitation, autogamy, herbivory, herbivore abundance, and young‐leaf palatability). Results for subtropical P. americana populations, however, were typically not intermediate between P. rivinoides and north‐temperate P. americana, as would be predicted by a linear latitudinal gradient in interaction importance. Subtropical young‐leaf palatability was intermediate, but subtropical mature leaves were the least palatable, and pollination‐related traits did not differ between temperate and subtropical regions. These nonlinear patterns of interaction importance suggest future work to relate interaction importance to climatic or biotic thresholds. In sum, we found that the biotic interactions hypothesis was more consistently supported at the larger spatial scale of our study.}, author = {Baskett, Carina and Schroeder, Lucy and Weber, Marjorie G. and Schemske, Douglas W.}, issn = {1557-7015}, journal = {Ecological Monographs}, number = {1}, publisher = {Wiley}, title = {{Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair}}, doi = {10.1002/ecm.1397}, volume = {90}, year = {2020}, } @article{7697, abstract = {* Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. * In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. * Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization. * These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.}, author = {Zhang, Yuzhou and Hartinger, Corinna and Wang, Xiaojuan and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {5}, pages = {1406--1416}, publisher = {Wiley}, title = {{Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters}}, doi = {10.1111/nph.16629}, volume = {227}, year = {2020}, } @article{8765, abstract = {This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.}, author = {Schreck, Camille and Wojtan, Christopher J}, issn = {1467-8659}, journal = {Computer Graphics Forum}, keywords = {Computer Networks and Communications}, number = {2}, pages = {89--99}, publisher = {Wiley}, title = {{A practical method for animating anisotropic elastoplastic materials}}, doi = {10.1111/cgf.13914}, volume = {39}, year = {2020}, } @article{8057, abstract = {Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities approaching 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of ‘free’ and ‘bound’ water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.}, author = {Bouchal, Roza and Li, Zhujie and Bongu, Chandra and Le Vot, Steven and Berthelot, Romain and Rotenberg, Benjamin and Favier, Frederic and Freunberger, Stefan Alexander and Salanne, Mathieu and Fontaine, Olivier}, issn = {1521-3757}, journal = {Angewandte Chemie}, number = {37}, pages = {16047--16051}, publisher = {Wiley}, title = {{Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte}}, doi = {10.1002/ange.202005378}, volume = {132}, year = {2020}, } @article{7343, abstract = {Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {565--574}, publisher = {Wiley}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.1111/ele.13458}, volume = {23}, year = {2020}, } @article{8099, abstract = {Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X‐ and Y‐chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X‐ and Y‐chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses.}, author = {Gammerdinger, William J and Toups, Melissa A and Vicoso, Beatriz}, issn = {1755-0998}, journal = {Molecular Ecology Resources}, number = {6}, pages = {1517--1525}, publisher = {Wiley}, title = {{Disagreement in FST estimators: A case study from sex chromosomes}}, doi = {10.1111/1755-0998.13210}, volume = {20}, year = {2020}, } @article{7847, abstract = {Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of 'free' and 'bound' water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability. }, author = {Bouchal, Roza and Li, Zhujie and Bongu, Chandra and Le Vot, Steven and Berthelot, Romain and Rotenberg, Benjamin and Favier, Fréderic and Freunberger, Stefan Alexander and Salanne, Mathieu and Fontaine, Olivier}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {37}, pages = {15913--1591}, publisher = {Wiley}, title = {{Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte}}, doi = {10.1002/anie.202005378}, volume = {59}, year = {2020}, } @article{7224, abstract = {Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.}, author = {Rybicki, Joel and Abrego, Nerea and Ovaskainen, Otso}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {506--517}, publisher = {Wiley}, title = {{Habitat fragmentation and species diversity in competitive communities}}, doi = {10.1111/ele.13450}, volume = {23}, year = {2020}, } @article{8329, abstract = {We show the synthesis of a redox‐active quinone, 2‐methoxy‐1,4‐hydroquinone (MHQ), from a bio‐based feedstock and its suitability as electrolyte in aqueous redox flow batteries. We identified semiquinone intermediates at insufficiently low pH and quinoid radicals as responsible for decomposition of MHQ under electrochemical conditions. Both can be avoided and/or stabilized, respectively, using H 3 PO 4 electrolyte, allowing for reversible cycling in a redox flow battery for hundreds of cycles.}, author = {Schlemmer, Werner and Nothdurft, Philipp and Petzold, Alina and Frühwirt, Philipp and Schmallegger, Max and Gescheidt-Demner, Georg and Fischer, Roland and Freunberger, Stefan Alexander and Kern, Wolfgang and Spirk, Stefan}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {51}, pages = {22943--22946}, publisher = {Wiley}, title = {{2‐methoxyhydroquinone from vanillin for aqueous redox‐flow batteries}}, doi = {10.1002/anie.202008253}, volume = {59}, year = {2020}, } @misc{13060, abstract = {Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, publisher = {Dryad}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.5061/DRYAD.CRJDFN318}, year = {2020}, } @misc{9780, abstract = {PADREV : 4,4'-dimethoxy[1,1'-biphenyl]-2,2',5,5'-tetrol Space Group: C 2 (5), Cell: a 24.488(16)Å b 5.981(4)Å c 3.911(3)Å, α 90° β 91.47(3)° γ 90°}, author = {Schlemmer, Werner and Nothdurft, Philipp and Petzold, Alina and Riess, Gisbert and Frühwirt, Philipp and Schmallegger, Max and Gescheidt-Demner, Georg and Fischer, Roland and Freunberger, Stefan Alexander and Kern, Wolfgang and Spirk, Stefan}, publisher = {CCDC}, title = {{CCDC 1991959: Experimental Crystal Structure Determination}}, doi = {10.5517/ccdc.csd.cc24vsrk}, year = {2020}, } @article{7207, abstract = {The hippocampus plays key roles in learning and memory and is a main target of Alzheimer's disease (AD), which causes progressive memory impairments. Despite numerous investigations about the processes required for the normal hippocampal functions, the neurotransmitter receptors involved in the synaptic deficits by which AD disables the hippocampus are not yet characterized. By combining histoblots, western blots, immunohistochemistry and high‐resolution immunoelectron microscopic methods for GABAB receptors, this study provides a quantitative description of the expression and the subcellular localization of GABAB1 in the hippocampus in a mouse model of AD at 1, 6 and 12 months of age. Western blots and histoblots showed that the total amount of protein and the laminar expression pattern of GABAB1 were similar in APP/PS1 mice and in age‐matched wild‐type mice. In contrast, immunoelectron microscopic techniques showed that the subcellular localization of GABAB1 subunit did not change significantly in APP/PS1 mice at 1 month of age, was significantly reduced in the stratum lacunosum‐moleculare of CA1 pyramidal cells at 6 months of age and significantly reduced at the membrane surface of CA1 pyramidal cells at 12 months of age. This reduction of plasma membrane GABAB1 was paralleled by a significant increase of the subunit at the intracellular sites. We further observed a decrease of membrane‐targeted GABAB receptors in axon terminals contacting CA1 pyramidal cells. Our data demonstrate compartment‐ and age‐dependent reduction of plasma membrane‐targeted GABAB receptors in the CA1 region of the hippocampus, suggesting that this decrease might be enough to alter the GABAB‐mediated synaptic transmission taking place in AD.}, author = {Martín-Belmonte, Alejandro and Aguado, Carolina and Alfaro-Ruíz, Rocío and Moreno-Martínez, Ana Esther and De La Ossa, Luis and Martínez-Hernández, José and Buisson, Alain and Früh, Simon and Bettler, Bernhard and Shigemoto, Ryuichi and Fukazawa, Yugo and Luján, Rafael}, issn = {17503639}, journal = {Brain Pathology}, number = {3}, pages = {554--575}, publisher = {Wiley}, title = {{Reduction in the neuronal surface of post and presynaptic GABA>B< receptors in the hippocampus in a mouse model of Alzheimer's disease}}, doi = {10.1111/bpa.12802}, volume = {30}, year = {2020}, } @article{7205, abstract = {Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.}, author = {Johannesson, Kerstin and Zagrodzka, Zuzanna and Faria, Rui and Westram, Anja M and Butlin, Roger K.}, issn = {14209101}, journal = {Journal of Evolutionary Biology}, number = {3}, pages = {342--351}, publisher = {Wiley}, title = {{Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes?}}, doi = {10.1111/jeb.13570}, volume = {33}, year = {2020}, } @inbook{7227, abstract = {Gastrulation entails specification and formation of three embryonic germ layers—ectoderm, mesoderm and endoderm—thereby establishing the basis for the future body plan. In zebrafish embryos, germ layer specification occurs during blastula and early gastrula stages (Ho & Kimmel, 1993), a period when the main morphogenetic movements underlying gastrulation are initiated. Hence, the signals driving progenitor cell fate specification, such as Nodal ligands from the TGF-β family, also play key roles in regulating germ layer progenitor cell segregation (Carmany-Rampey & Schier, 2001; David & Rosa, 2001; Feldman et al., 2000; Gritsman et al., 1999; Keller et al., 2008). In this review, we summarize and discuss the main signaling pathways involved in germ layer progenitor cell fate specification and segregation, specifically focusing on recent advances in understanding the interplay between mesoderm and endoderm specification and the internalization movements at the onset of zebrafish gastrulation.}, author = {Nunes Pinheiro, Diana C and Heisenberg, Carl-Philipp J}, booktitle = {Gastrulation: From Embryonic Pattern to Form}, issn = {00702153}, pages = {343--375}, publisher = {Elsevier}, title = {{Zebrafish gastrulation: Putting fate in motion}}, doi = {10.1016/bs.ctdb.2019.10.009}, volume = {136}, year = {2020}, } @article{7417, abstract = {Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development.}, author = {Sinclair, Scott A and Gille, S. and Pauly, M. and Krämer, U.}, issn = {1559-2324}, journal = {Plant Signaling & Behavior}, number = {1}, publisher = {Informa UK Limited}, title = {{Regulation of acetylation of plant cell wall components is complex and responds to external stimuli}}, doi = {10.1080/15592324.2019.1687185}, volume = {15}, year = {2020}, } @article{6185, abstract = {For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).}, author = {Erdös, László and Krüger, Torben H and Schröder, Dominik J}, issn = {1432-0916}, journal = {Communications in Mathematical Physics}, pages = {1203--1278}, publisher = {Springer Nature}, title = {{Cusp universality for random matrices I: Local law and the complex Hermitian case}}, doi = {10.1007/s00220-019-03657-4}, volume = {378}, year = {2020}, } @phdthesis{7629, abstract = {This thesis is based on three main topics: In the first part, we study convergence of discrete gradient flow structures associated with regular finite-volume discretisations of Fokker-Planck equations. We show evolutionary I convergence of the discrete gradient flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck equation in arbitrary dimension d >= 1. Along the argument, we prove Mosco- and I-convergence results for discrete energy functionals, which are of independent interest for convergence of equivalent gradient flow structures in Hilbert spaces. The second part investigates L2-Wasserstein flows on metric graph. The starting point is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a regularisation scheme for solutions of the continuity equation, adapted to the peculiar geometric structure of metric graphs. Based on those results, we show that the L2-Wasserstein space over a metric graph admits a gradient flow which may be identified as a solution of a Fokker-Planck equation. In the third part, we focus again on the discrete gradient flows, already encountered in the first part. We propose a variational structure which extends the gradient flow structure to Markov chains violating the detailed-balance conditions. Using this structure, we characterise contraction estimates for the discrete heat flow in terms of convexity of corresponding path-dependent energy functionals. In addition, we use this approach to derive several functional inequalities for said functionals.}, author = {Forkert, Dominik L}, issn = {2663-337X}, pages = {154}, publisher = {Institute of Science and Technology Austria}, title = {{Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains}}, doi = {10.15479/AT:ISTA:7629}, year = {2020}, } @phdthesis{8574, abstract = {This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes leave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. In Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful tool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real behavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments. In Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model. We give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both drift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. In Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare the results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. In the last chapter, we give a brief outlook to further research. }, author = {Szep, Eniko}, issn = {2663-337X}, pages = {158}, publisher = {Institute of Science and Technology Austria}, title = {{Local adaptation in metapopulations}}, doi = {10.15479/AT:ISTA:8574}, year = {2020}, } @phdthesis{7514, abstract = {We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case. We motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks.}, author = {Mayer, Simon}, issn = {2663-337X}, pages = {148}, publisher = {Institute of Science and Technology Austria}, title = {{The free energy of a dilute two-dimensional Bose gas}}, doi = {10.15479/AT:ISTA:7514}, year = {2020}, } @phdthesis{8353, abstract = {Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent profile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest and homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these electrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner.}, author = {Steiner, Julia}, issn = {2663-337X}, pages = {191}, publisher = {Institute of Science and Technology Austria}, title = {{Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I}}, doi = {10.15479/AT:ISTA:8353}, year = {2020}, } @phdthesis{8589, abstract = {The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development.}, author = {Han, Huibin}, issn = {2663-337X}, pages = {164}, publisher = {Institute of Science and Technology Austria}, title = {{Novel insights into PIN polarity regulation during Arabidopsis development}}, doi = {10.15479/AT:ISTA:8589}, year = {2020}, } @article{8284, abstract = {Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.}, author = {Steiner, Julia and Sazanov, Leonid A}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter}}, doi = {10.7554/eLife.59407}, volume = {9}, year = {2020}, } @phdthesis{8155, abstract = {In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as transcriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal non-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters. In the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are hard to evolve or maintain. }, author = {Grah, Rok}, issn = {2663-337X}, pages = {310}, publisher = {Institute of Science and Technology Austria}, title = {{Gene regulation across scales – how biophysical constraints shape evolution}}, doi = {10.15479/AT:ISTA:8155}, year = {2020}, } @article{7643, author = {Han, Huibin and Rakusova, Hana and Verstraeten, Inge and Zhang, Yuzhou and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {5}, pages = {37--40}, publisher = {American Society of Plant Biologists}, title = {{SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism}}, doi = {10.1104/pp.20.00212}, volume = {183}, year = {2020}, } @unpublished{7675, abstract = {In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.}, author = {Grah, Rok and Zoller, Benjamin and Tkačik, Gašper}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Normative models of enhancer function}}, doi = {10.1101/2020.04.08.029405}, year = {2020}, } @phdthesis{7460, abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications. For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.}, author = {Ölsböck, Katharina}, issn = {2663-337X}, keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry}, pages = {155}, publisher = {Institute of Science and Technology Austria}, title = {{The hole system of triangulated shapes}}, doi = {10.15479/AT:ISTA:7460}, year = {2020}, }