@article{4065,
abstract = {We prove that given n⩾3 convex, compact, and pairwise disjoint sets in the plane, they may be covered with n non-overlapping convex polygons with a total of not more than 6n−9 sides, and with not more than 3n−6 distinct slopes. Furthermore, we construct sets that require 6n−9 sides and 3n−6 slopes for n⩾3. The upper bound on the number of slopes implies a new bound on a recently studied transversal problem.},
author = {Herbert Edelsbrunner and Robison, Arch D and Shen, Xiao-Jun},
journal = {Discrete Mathematics},
number = {2},
pages = {153 -- 164},
publisher = {Elsevier},
title = {{Covering convex sets with non-overlapping polygons}},
doi = {10.1016/0012-365X(90)90147-A},
volume = {81},
year = {1990},
}
@article{4066,
abstract = {We consider several problems involving points and planes in three dimensions. Our main results are: (i) The maximum number of faces boundingm distinct cells in an arrangement ofn planes isO(m 2/3 n logn +n 2); we can calculatem such cells specified by a point in each, in worst-case timeO(m 2/3 n log3 n+n 2 logn). (ii) The maximum number of incidences betweenn planes andm vertices of their arrangement isO(m 2/3 n logn+n 2), but this number is onlyO(m 3/5– n 4/5+2 +m+n logm), for any>0, for any collection of points no three of which are collinear. (iii) For an arbitrary collection ofm points, we can calculate the number of incidences between them andn planes by a randomized algorithm whose expected time complexity isO((m 3/4– n 3/4+3 +m) log2 n+n logn logm) for any>0. (iv) Givenm points andn planes, we can find the plane lying immediately below each point in randomized expected timeO([m 3/4– n 3/4+3 +m] log2 n+n logn logm) for any>0. (v) The maximum number of facets (i.e., (d–1)-dimensional faces) boundingm distinct cells in an arrangement ofn hyperplanes ind dimensions,d>3, isO(m 2/3 n d/3 logn+n d–1). This is also an upper bound for the number of incidences betweenn hyperplanes ind dimensions andm vertices of their arrangement. The combinatorial bounds in (i) and (v) and the general bound in (ii) are almost tight.},
author = {Herbert Edelsbrunner and Guibas, Leonidas and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {197 -- 216},
publisher = {Springer},
title = {{The complexity of many cells in arrangements of planes and related problems}},
doi = {10.1007/BF02187785},
volume = {5},
year = {1990},
}
@inproceedings{4067,
abstract = {This paper proves an O(m 2/3 n 2/3+m+n) upper bound on the number of incidences between m points and n hyperplanes in four dimensions, assuming all points lie on one side of each hyperplane and the points and hyperplanes satisfy certain natural general position conditions. This result has application to various three-dimensional combinatorial distance problems. For example, it implies the same upper bound for the number of bichromatic minimum distance pairs in a set of m blue and n red points in three-dimensional space. This improves the best previous bound for this problem.},
author = {Herbert Edelsbrunner and Sharir, Micha},
pages = {419 -- 428},
publisher = {Springer},
title = {{A hyperplane Incidence problem with applications to counting distances}},
doi = {10.1007/3-540-52921-7_91},
volume = {450},
year = {1990},
}
@article{4068,
abstract = {LetS be a collection ofn convex, closed, and pairwise nonintersecting sets in the Euclidean plane labeled from 1 ton. A pair of permutations
(i1i2in−1in)(inin−1i2i1)
is called ageometric permutation of S if there is a line that intersects all sets ofS in this order. We prove thatS can realize at most 2n–2 geometric permutations. This upper bound is tight.},
author = {Herbert Edelsbrunner and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {35 -- 42},
publisher = {Springer},
title = {{The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n−2}},
doi = { 10.1007/BF02187778},
volume = {5},
year = {1990},
}
@article{4069,
abstract = {Let C be a cell complex in d-dimensional Euclidean space whose faces are obtained by orthogonal projection of the faces of a convex polytope in d + 1 dimensions. For example, the Delaunay triangulation of a finite point set is such a cell complex. This paper shows that the in front/behind relation defined for the faces of C with respect to any fixed viewpoint x is acyclic. This result has applications to hidden line/surface removal and other problems in computational geometry.},
author = {Herbert Edelsbrunner},
journal = {Combinatorica},
number = {3},
pages = {251 -- 260},
publisher = {Springer},
title = {{An acyclicity theorem for cell complexes in d dimension}},
doi = {10.1007/BF02122779},
volume = {10},
year = {1990},
}
@article{4070,
abstract = {Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s) [1, 2,…,n]. We say that s can see t if p(s)<p(t) and there is a point ps∩t so that pu for all u with p(s)<p(u)<p(t). It is shown that a ranking can be found in time O(n log n) such that each interval sees at most three other intervals. It is also shown that a ranking that minimizes the average number of endpoints visible from an interval can be computed in time O(n 5/2). The results have applications to intersection problems for intervals, as well as to channel routing problems which arise in layouts of VLSI circuits.},
author = {Herbert Edelsbrunner and Overmars, Mark H and Welzl, Emo and Hartman, Irith Ben-Arroyo and Feldman,Jack A},
journal = {International Journal of Computer Mathematics},
number = {3-4},
pages = {129 -- 144},
publisher = {Taylor & Francis},
title = {{Ranking intervals under visibility constraints}},
doi = {10.1080/00207169008803871},
volume = {34},
year = {1990},
}
@inproceedings{4071,
abstract = {We show that a triangulation of a set of n points in the plane that minimizes the maximum angle can be computed in time O(n2 log n) and space O(n). In the same amount of time and space we can also handle the constrained case where edges are prescribed. The algorithm iteratively improves an arbitrary initial triangulation and is fairly easy to implement.},
author = {Herbert Edelsbrunner and Tan, Tiow Seng and Waupotitsch, Roman},
pages = {44 -- 52},
publisher = {ACM},
title = {{An O(n^2log n) time algorithm for the MinMax angle triangulation}},
doi = {10.1145/98524.98535},
year = {1990},
}
@article{4072,
abstract = {We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3– n 2/3+2 +n) for any>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3– n 2/3+2 logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3– n 2/3+2 +n (n) logm) for any>0, where(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3– n 2/3+2 log+n(n) log2 n logm).},
author = {Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {161 -- 196},
publisher = {Springer},
title = {{The complexity and construction of many faces in arrangements of lines and of segments}},
doi = { 10.1007/BF02187784},
volume = {5},
year = {1990},
}
@inproceedings{4073,
abstract = {A number of rendering algorithms in computer graphics sort three-dimensional objects by depth and assume that there is no cycle that makes the sorting impossible. One way to resolve the problem caused by cycles is to cut the objects into smaller pieces. The problem of estimating how many such cuts are always sufficient is addressed. A few related algorithmic and combinatorial geometry problems are considered},
author = {Chazelle, Bernard and Herbert Edelsbrunner and Guibas, Leonidas J and Pollack, Richard and Seidel, Raimund and Sharir, Micha and Snoeyink, Jack},
pages = {242 -- 251},
publisher = {IEEE},
title = {{Counting and cutting cycles of lines and rods in space}},
doi = {10.1109/FSCS.1990.89543},
year = {1990},
}
@article{4074,
author = {Clarkson, Kenneth L and Herbert Edelsbrunner and Guibas, Leonidas J and Sharir, Micha and Welzl, Emo},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {99 -- 160},
publisher = {Springer},
title = {{Combinatorial complexity bounds for arrangements of curves and spheres}},
doi = {10.1007/BF02187783},
volume = {5},
year = {1990},
}