@inproceedings{2955, abstract = {We consider two-player stochastic games played on finite graphs with reachability objectives where the first player tries to ensure a target state to be visited almost-surely (i.e., with probability 1), or positively (i.e., with positive probability), no matter the strategy of the second player. We classify such games according to the information and the power of randomization available to the players. On the basis of information, the game can be one-sided with either (a) player 1, or (b) player 2 having partial observation (and the other player has perfect observation), or two-sided with (c) both players having partial observation. On the basis of randomization, the players (a) may not be allowed to use randomization (pure strategies), or (b) may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) may use full randomization. Our main results for pure strategies are as follows. (1) For one-sided games with player 1 having partial observation we show that (in contrast to full randomized strategies) belief-based (subset-construction based) strategies are not sufficient, and we present an exponential upper bound on memory both for almostsure and positive winning strategies; we show that the problem of deciding the existence of almost-sure and positive winning strategies for player 1 is EXPTIME-complete. (2) For one-sided games with player 2 having partial observation we show that non-elementary memory is both necessary and sufficient for both almost-sure and positive winning strategies. (3) We show that for the general (two-sided) case finite-memory strategies are sufficient for both positive and almost-sure winning, and at least non-elementary memory is required. We establish the equivalence of the almost-sure winning problems for pure strategies and for randomized strategies with actions invisible. Our equivalence result exhibits serious flaws in previous results of the literature: we show a non-elementary memory lower bound for almost-sure winning whereas an exponential upper bound was previously claimed.}, author = {Chatterjee, Krishnendu and Doyen, Laurent}, booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {Dubrovnik, Croatia}, publisher = {IEEE}, title = {{Partial-observation stochastic games: How to win when belief fails}}, doi = {10.1109/LICS.2012.28}, year = {2012}, } @inproceedings{3341, abstract = {We consider two-player stochastic games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with \omega-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity gameswith respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition function is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).}, author = {Chatterjee, Krishnendu}, location = {Tallinn, Estonia}, pages = {270 -- 285}, publisher = {Springer}, title = {{Robustness of structurally equivalent concurrent parity games}}, doi = {10.1007/978-3-642-28729-9_18}, volume = {7213}, year = {2012}, } @inproceedings{2957, abstract = {We consider probabilistic automata on infinite words with acceptance defined by parity conditions. We consider three qualitative decision problems: (i) the positive decision problem asks whether there is a word that is accepted with positive probability; (ii) the almost decision problem asks whether there is a word that is accepted with probability 1; and (iii) the limit decision problem asks whether words are accepted with probability arbitrarily close to 1. We unify and generalize several decidability results for probabilistic automata over infinite words, and identify a robust (closed under union and intersection) subclass of probabilistic automata for which all the qualitative decision problems are decidable for parity conditions. We also show that if the input words are restricted to lasso shape (regular) words, then the positive and almost problems are decidable for all probabilistic automata with parity conditions. For most decidable problems we show an optimal PSPACE-complete complexity bound.}, author = {Chatterjee, Krishnendu and Tracol, Mathieu}, booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {Dubrovnik, Croatia }, publisher = {IEEE}, title = {{Decidable problems for probabilistic automata on infinite words}}, doi = {10.1109/LICS.2012.29}, year = {2012}, } @article{3249, abstract = {Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of "fit" or "desirability". We extend the simulation preorder to the quantitative setting by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.}, author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun}, journal = {Theoretical Computer Science}, number = {1}, pages = {21 -- 35}, publisher = {Elsevier}, title = {{Simulation distances}}, doi = {10.1016/j.tcs.2011.08.002}, volume = {413}, year = {2012}, } @inproceedings{3124, abstract = {We consider the problem of inference in a graphical model with binary variables. While in theory it is arguably preferable to compute marginal probabilities, in practice researchers often use MAP inference due to the availability of efficient discrete optimization algorithms. We bridge the gap between the two approaches by introducing the Discrete Marginals technique in which approximate marginals are obtained by minimizing an objective function with unary and pairwise terms over a discretized domain. This allows the use of techniques originally developed for MAP-MRF inference and learning. We explore two ways to set up the objective function - by discretizing the Bethe free energy and by learning it from training data. Experimental results show that for certain types of graphs a learned function can outperform the Bethe approximation. We also establish a link between the Bethe free energy and submodular functions. }, author = {Korc, Filip and Kolmogorov, Vladimir and Lampert, Christoph}, location = {Edinburgh, Scotland}, publisher = {ICML}, title = {{Approximating marginals using discrete energy minimization}}, year = {2012}, } @misc{5396, abstract = {We consider the problem of inference in agraphical model with binary variables. While in theory it is arguably preferable to compute marginal probabilities, in practice researchers often use MAP inference due to the availability of efficient discrete optimization algorithms. We bridge the gap between the two approaches by introducing the Discrete Marginals technique in which approximate marginals are obtained by minimizing an objective function with unary and pair-wise terms over a discretized domain. This allows the use of techniques originally devel-oped for MAP-MRF inference and learning. We explore two ways to set up the objective function - by discretizing the Bethe free energy and by learning it from training data. Experimental results show that for certain types of graphs a learned function can out-perform the Bethe approximation. We also establish a link between the Bethe free energy and submodular functions.}, author = {Korc, Filip and Kolmogorov, Vladimir and Lampert, Christoph}, issn = {2664-1690}, pages = {13}, publisher = {IST Austria}, title = {{Approximating marginals using discrete energy minimization}}, doi = {10.15479/AT:IST-2012-0003}, year = {2012}, } @techreport{5398, abstract = {This document is created as a part of the project “Repository for Research Data on IST Austria”. It summarises the actual state of research data at IST Austria, based on survey results. It supports the choice of appropriate software, which would best fit the requirements of their users, the researchers.}, author = {Porsche, Jana}, publisher = {IST Austria}, title = {{Actual state of research data @ ISTAustria}}, year = {2012}, } @article{5839, abstract = {Canny's edge detection algorithm is a classical and robust method for edge detection in gray-scale images. The two significant features of this method are introduction of NMS (Non-Maximum Suppression) and double thresholding of the gradient image. Due to poor illumination, the region boundaries in an image may become vague, creating uncertainties in the gradient image. In this paper, we have proposed an algorithm based on the concept of type-2 fuzzy sets to handle uncertainties that automatically selects the threshold values needed to segment the gradient image using classical Canny’s edge detection algorithm. The results show that our algorithm works significantly well on different benchmark images as well as medical images (hand radiography images). }, author = {Biswas, Ranita and Sil, Jaya}, issn = {2212-0173}, journal = {Procedia Technology}, pages = {820--824}, publisher = {Elsevier}, title = {{An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets}}, doi = {10.1016/j.protcy.2012.05.134}, volume = {4}, year = {2012}, } @article{596, abstract = {The human Mediator complex controls RNA polymerase II (pol II) function in ways that remain incompletely understood. Activator-Mediator binding alters Mediator structure, and these activator-induced structural shifts appear to play key roles in regulating transcription. A recent cryo-electron microscopy (EM) analysis revealed that pol II adopted a stable orientation within a Mediator-pol II-TFIIF assembly in which Mediator was bound to the activation domain of viral protein 16 (VP16). Whereas TFIIF was shown to be important for orienting pol II within this assembly, the potential role of the activator was not assessed. To determine how activator binding might affect pol II orientation, we isolated human Mediator-pol II-TFIIF complexes in which Mediator was not bound to an activator. Cryo-EM analysis of this assembly, coupled with pol II crystal structure docking, revealed that pol II binds Mediator at the same general location; however, in contrast to VP16-bound Mediator, pol II does not appear to stably orient in the absence of an activator. Variability in pol II orientation might be important mechanistically, perhaps to enable sense and antisense transcription at human promoters. Because Mediator interacts extensively with pol II, these results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation.}, author = {Bernecky, Carrie A and Taatjes, Dylan}, journal = {Journal of Molecular Biology}, number = {5}, pages = {387 -- 394}, publisher = {Elsevier}, title = {{Activator-mediator binding stabilizes RNA polymerase II orientation within the human mediator-RNA polymerase II-TFIIF assembly}}, doi = {10.1016/j.jmb.2012.02.014}, volume = {417}, year = {2012}, } @article{6136, abstract = {Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that Caenorhabditis elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal's behavioral state. Sustained signaling relied on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the inositol-1,4,5-trisphosphate receptors. Tonic activity evoked continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signaling was propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoked similar locomotory states at particular O2 concentrations, regardless of previous d[O2]/dt. However, a phasic component of the URX receptors' response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enabled transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change.}, author = {Busch, Karl Emanuel and Laurent, Patrick and Soltesz, Zoltan and Murphy, Robin Joseph and Faivre, Olivier and Hedwig, Berthold and Thomas, Martin and Smith, Heather L and de Bono, Mario}, issn = {1097-6256}, journal = {Nature Neuroscience}, number = {4}, pages = {581--591}, publisher = {Springer Nature}, title = {{Tonic signaling from O2 sensors sets neural circuit activity and behavioral state}}, doi = {10.1038/nn.3061}, volume = {15}, year = {2012}, }