@article{2287, abstract = {Negative frequency-dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long-lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex-ratio variation in two chromosome races of Rumex hastatulus, an annual, wind-pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female-biased sex ratios. Female-biased sex ratios characterized most populations of R. hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high-density populations had the highest proportion of females, whereas smaller, low-density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female-biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.}, author = {Pickup, Melinda and Barrett, Spencer}, journal = {Ecology and Evolution}, number = {3}, pages = {629 -- 639}, publisher = {Wiley-Blackwell}, title = {{The influence of demography and local mating environment on sex ratios in a wind-pollinated dioecious plant}}, doi = {10.1002/ece3.465}, volume = {3}, year = {2013}, } @article{2282, abstract = {Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.}, author = {Campinho, Pedro and Behrndt, Martin and Ranft, Jonas and Risler, Thomas and Minc, Nicolas and Heisenberg, Carl-Philipp J}, journal = {Nature Cell Biology}, pages = {1405 -- 1414}, publisher = {Nature Publishing Group}, title = {{Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly}}, doi = {10.1038/ncb2869}, volume = {15}, year = {2013}, } @article{2283, abstract = {Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.}, author = {Pull, Christopher and Hughes, William and Brown, Markus}, journal = {Naturwissenschaften}, number = {12}, pages = {1125 -- 1136}, publisher = {Springer}, title = {{Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger }}, doi = {10.1007/s00114-013-1115-5}, volume = {100}, year = {2013}, } @article{2286, abstract = {The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation.}, author = {Campinho, Pedro and Heisenberg, Carl-Philipp J}, journal = {EMBO Journal}, number = {21}, pages = {2783 -- 2784}, publisher = {Wiley-Blackwell}, title = {{The force and effect of cell proliferation}}, doi = {10.1038/emboj.2013.225}, volume = {32}, year = {2013}, } @article{2289, abstract = {Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness, which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.}, author = {Henzinger, Thomas A}, journal = {Computer Science Research and Development}, number = {4}, pages = {331 -- 344}, publisher = {Springer}, title = {{Quantitative reactive modeling and verification}}, doi = {10.1007/s00450-013-0251-7}, volume = {28}, year = {2013}, } @article{2290, abstract = {The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development.}, author = {Boutté, Yohann and Jonsson, Kristoffer and Mcfarlane, Heather and Johnson, Errin and Gendre, Delphine and Swarup, Ranjan and Friml, Jirí and Samuels, Lacey and Robert, Stéphanie and Bhalerao, Rishikesh}, journal = {PNAS}, number = {40}, pages = {16259 -- 16264}, publisher = {National Academy of Sciences}, title = {{ECHIDNA mediated post Golgi trafficking of auxin carriers for differential cell elongation}}, doi = {10.1073/pnas.1309057110}, volume = {110}, year = {2013}, } @inproceedings{2294, abstract = {In this work we propose a system for automatic classification of Drosophila embryos into developmental stages. While the system is designed to solve an actual problem in biological research, we believe that the principle underly- ing it is interesting not only for biologists, but also for researchers in computer vision. The main idea is to combine two orthogonal sources of information: one is a classifier trained on strongly invariant features, which makes it applicable to images of very different conditions, but also leads to rather noisy predictions. The other is a label propagation step based on a more powerful similarity measure that however is only consistent within specific subsets of the data at a time. In our biological setup, the information sources are the shape and the staining patterns of embryo images. We show experimentally that while neither of the methods can be used by itself to achieve satisfactory results, their combina- tion achieves prediction quality comparable to human performance.}, author = {Kazmar, Tomas and Kvon, Evgeny and Stark, Alexander and Lampert, Christoph}, location = {Sydney, Australia}, publisher = {IEEE}, title = {{Drosophila Embryo Stage Annotation using Label Propagation}}, doi = {10.1109/ICCV.2013.139}, year = {2013}, } @proceedings{2292, abstract = {This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence.}, editor = {Chatterjee, Krishnendu and Sgall, Jiri}, isbn = {978-3-642-40312-5}, location = {Klosterneuburg, Austria}, pages = {VI -- 854}, publisher = {Springer}, title = {{Mathematical Foundations of Computer Science 2013}}, doi = {10.1007/978-3-642-40313-2}, volume = {8087}, year = {2013}, } @inproceedings{2293, abstract = {Many computer vision problems have an asymmetric distribution of information between training and test time. In this work, we study the case where we are given additional information about the training data, which however will not be available at test time. This situation is called learning using privileged information (LUPI). We introduce two maximum-margin techniques that are able to make use of this additional source of information, and we show that the framework is applicable to several scenarios that have been studied in computer vision before. Experiments with attributes, bounding boxes, image tags and rationales as additional information in object classification show promising results.}, author = {Sharmanska, Viktoriia and Quadrianto, Novi and Lampert, Christoph}, location = {Sydney, Australia}, pages = {825 -- 832}, publisher = {IEEE}, title = {{Learning to rank using privileged information}}, doi = {10.1109/ICCV.2013.107}, year = {2013}, } @inproceedings{2291, abstract = {Cryptographic access control promises to offer easily distributed trust and broader applicability, while reducing reliance on low-level online monitors. Traditional implementations of cryptographic access control rely on simple cryptographic primitives whereas recent endeavors employ primitives with richer functionality and security guarantees. Worryingly, few of the existing cryptographic access-control schemes come with precise guarantees, the gap between the policy specification and the implementation being analyzed only informally, if at all. In this paper we begin addressing this shortcoming. Unlike prior work that targeted ad-hoc policy specification, we look at the well-established Role-Based Access Control (RBAC) model, as used in a typical file system. In short, we provide a precise syntax for a computational version of RBAC, offer rigorous definitions for cryptographic policy enforcement of a large class of RBAC security policies, and demonstrate that an implementation based on attribute-based encryption meets our security notions. We view our main contribution as being at the conceptual level. Although we work with RBAC for concreteness, our general methodology could guide future research for uses of cryptography in other access-control models. }, author = {Ferrara, Anna and Fuchsbauer, Georg and Warinschi, Bogdan}, location = {New Orleans, LA, United States}, pages = {115 -- 129}, publisher = {IEEE}, title = {{Cryptographically enforced RBAC}}, doi = {10.1109/CSF.2013.15}, year = {2013}, }