@article{2018, abstract = {Synaptic cell adhesion molecules are increasingly gaining attention for conferring specific properties to individual synapses. Netrin-G1 and netrin-G2 are trans-synaptic adhesion molecules that distribute on distinct axons, and their presence restricts the expression of their cognate receptors, NGL1 and NGL2, respectively, to specific subdendritic segments of target neurons. However, the neural circuits and functional roles of netrin-G isoform complexes remain unclear. Here, we use netrin-G-KO and NGL-KO mice to reveal that netrin-G1/NGL1 and netrin-G2/NGL2 interactions specify excitatory synapses in independent hippocampal pathways. In the hippocampal CA1 area, netrin-G1/NGL1 and netrin-G2/NGL2 were expressed in the temporoammonic and Schaffer collateral pathways, respectively. The lack of presynaptic netrin-Gs led to the dispersion of NGLs from postsynaptic membranes. In accord, netrin-G mutant synapses displayed opposing phenotypes in long-term and short-term plasticity through discrete biochemical pathways. The plasticity phenotypes in netrin-G-KOs were phenocopied in NGL-KOs, with a corresponding loss of netrin-Gs from presynaptic membranes. Our findings show that netrin-G/NGL interactions differentially control synaptic plasticity in distinct circuits via retrograde signaling mechanisms and explain how synaptic inputs are diversified to control neuronal activity.}, author = {Matsukawa, Hiroshi and Akiyoshi Nishimura, Sachiko and Zhang, Qi and Luján, Rafael and Yamaguchi, Kazuhiko and Goto, Hiromichi and Yaguchi, Kunio and Hashikawa, Tsutomu and Sano, Chie and Shigemoto, Ryuichi and Nakashiba, Toshiaki and Itohara, Shigeyoshi}, issn = {1529-2401}, journal = {Journal of Neuroscience}, number = {47}, pages = {15779 -- 15792}, publisher = {Society for Neuroscience}, title = {{Netrin-G/NGL complexes encode functional synaptic diversification}}, doi = {10.1523/JNEUROSCI.1141-14.2014}, volume = {34}, year = {2014}, } @article{2019, abstract = {We prove that the empirical density of states of quantum spin glasses on arbitrary graphs converges to a normal distribution as long as the maximal degree is negligible compared with the total number of edges. This extends the recent results of Keating et al. (2014) that were proved for graphs with bounded chromatic number and with symmetric coupling distribution. Furthermore, we generalise the result to arbitrary hypergraphs. We test the optimality of our condition on the maximal degree for p-uniform hypergraphs that correspond to p-spin glass Hamiltonians acting on n distinguishable spin- 1/2 particles. At the critical threshold p = n1/2 we find a sharp classical-quantum phase transition between the normal distribution and the Wigner semicircle law. The former is characteristic to classical systems with commuting variables, while the latter is a signature of noncommutative random matrix theory.}, author = {Erdös, László and Schröder, Dominik J}, journal = {Mathematical Physics, Analysis and Geometry}, number = {3-4}, pages = {441 -- 464}, publisher = {Springer}, title = {{Phase transition in the density of states of quantum spin glasses}}, doi = {10.1007/s11040-014-9164-3}, volume = {17}, year = {2014}, } @article{2013, abstract = {An asymptotic theory is developed for computing volumes of regions in the parameter space of a directed Gaussian graphical model that are obtained by bounding partial correlations. We study these volumes using the method of real log canonical thresholds from algebraic geometry. Our analysis involves the computation of the singular loci of correlation hypersurfaces. Statistical applications include the strong-faithfulness assumption for the PC algorithm and the quantification of confounder bias in causal inference. A detailed analysis is presented for trees, bow ties, tripartite graphs, and complete graphs. }, author = {Lin, Shaowei and Uhler, Caroline and Sturmfels, Bernd and Bühlmann, Peter}, journal = {Foundations of Computational Mathematics}, number = {5}, pages = {1079 -- 1116}, publisher = {Springer}, title = {{Hypersurfaces and their singularities in partial correlation testing}}, doi = {10.1007/s10208-014-9205-0}, volume = {14}, year = {2014}, } @unpublished{2017, abstract = { Gaussian graphical models have received considerable attention during the past four decades from the statistical and machine learning communities. In Bayesian treatments of this model, the G-Wishart distribution serves as the conjugate prior for inverse covariance matrices satisfying graphical constraints. While it is straightforward to posit the unnormalized densities, the normalizing constants of these distributions have been known only for graphs that are chordal, or decomposable. Up until now, it was unknown whether the normalizing constant for a general graph could be represented explicitly, and a considerable body of computational literature emerged that attempted to avoid this apparent intractability. We close this question by providing an explicit representation of the G-Wishart normalizing constant for general graphs.}, author = {Caroline Uhler and Lenkoski, Alex and Richards, Donald}, booktitle = {ArXiv}, publisher = {ArXiv}, title = {{ Exact formulas for the normalizing constants of Wishart distributions for graphical models}}, year = {2014}, } @article{2022, abstract = {Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ∼8–9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ∼1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.}, author = {Gao, Peng and Postiglione, Maria P and Krieger, Teresa and Hernandez, Luisirene and Wang, Chao and Han, Zhi and Streicher, Carmen and Papusheva, Ekaterina and Insolera, Ryan and Chugh, Kritika and Kodish, Oren and Huang, Kun and Simons, Benjamin and Luo, Liqun and Hippenmeyer, Simon and Shi, Song}, journal = {Cell}, number = {4}, pages = {775 -- 788}, publisher = {Cell Press}, title = {{Deterministic progenitor behavior and unitary production of neurons in the neocortex}}, doi = {10.1016/j.cell.2014.10.027}, volume = {159}, year = {2014}, } @article{2020, abstract = {The mammalian heart has long been considered a postmitotic organ, implying that the total number of cardiomyocytes is set at birth. Analysis of cell division in the mammalian heart is complicated by cardiomyocyte binucleation shortly after birth, which makes it challenging to interpret traditional assays of cell turnover [Laflamme MA, Murray CE (2011) Nature 473(7347):326–335; Bergmann O, et al. (2009) Science 324(5923):98–102]. An elegant multi-isotope imaging-mass spectrometry technique recently calculated the low, discrete rate of cardiomyocyte generation in mice [Senyo SE, et al. (2013) Nature 493(7432):433–436], yet our cellular-level understanding of postnatal cardiomyogenesis remains limited. Herein, we provide a new line of evidence for the differentiated α-myosin heavy chain-expressing cardiomyocyte as the cell of origin of postnatal cardiomyogenesis using the “mosaic analysis with double markers” mouse model. We show limited, life-long, symmetric division of cardiomyocytes as a rare event that is evident in utero but significantly diminishes after the first month of life in mice; daughter cardiomyocytes divide very seldom, which this study is the first to demonstrate, to our knowledge. Furthermore, ligation of the left anterior descending coronary artery, which causes a myocardial infarction in the mosaic analysis with double-marker mice, did not increase the rate of cardiomyocyte division above the basal level for up to 4 wk after the injury. The clonal analysis described here provides direct evidence of postnatal mammalian cardiomyogenesis.}, author = {Ali, Shah and Hippenmeyer, Simon and Saadat, Lily and Luo, Liqun and Weissman, Irving and Ardehali, Reza}, journal = {PNAS}, number = {24}, pages = {8850 -- 8855}, publisher = {National Academy of Sciences}, title = {{Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice}}, doi = {10.1073/pnas.1408233111}, volume = {111}, year = {2014}, } @article{2021, abstract = {Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but global Purkinje cell knockout had no effect. Removal of the TrkC ligand neurotrophin-3 (NT-3) from cerebellar granule cells, which provide major afferent input to developing Purkinje cell dendrites, rescued the dendrite defects caused by sparse TrkC disruption in Purkinje cells. Our data demonstrate that NT-3 from presynaptic neurons (granule cells) is required for TrkC-dependent competitive dendrite morphogenesis in postsynaptic neurons (Purkinje cells)—a previously unknown mechanism of neural circuit development.}, author = {William, Joo and Hippenmeyer, Simon and Luo, Liqun}, journal = {Science}, number = {6209}, pages = {626 -- 629}, publisher = {American Association for the Advancement of Science}, title = {{Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling}}, doi = {10.1126/science.1258996}, volume = {346}, year = {2014}, } @inproceedings{2027, abstract = {We present a general framework for applying machine-learning algorithms to the verification of Markov decision processes (MDPs). The primary goal of these techniques is to improve performance by avoiding an exhaustive exploration of the state space. Our framework focuses on probabilistic reachability, which is a core property for verification, and is illustrated through two distinct instantiations. The first assumes that full knowledge of the MDP is available, and performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP, and yields probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. The latter is the first extension of statistical model checking for unbounded properties inMDPs. In contrast with other related techniques, our approach is not restricted to time-bounded (finite-horizon) or discounted properties, nor does it assume any particular properties of the MDP. We also show how our methods extend to LTL objectives. We present experimental results showing the performance of our framework on several examples.}, author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Chmelik, Martin and Forejt, Vojtěch and Kretinsky, Jan and Kwiatkowska, Marta and Parker, David and Ujma, Mateusz}, booktitle = { Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)}, editor = {Cassez, Franck and Raskin, Jean-François}, location = {Sydney, Australia}, pages = {98 -- 114}, publisher = {Society of Industrial and Applied Mathematics}, title = {{Verification of markov decision processes using learning algorithms}}, doi = {10.1007/978-3-319-11936-6_8}, volume = {8837}, year = {2014}, } @article{2031, abstract = {A puzzling property of synaptic transmission, originally established at the neuromuscular junction, is that the time course of transmitter release is independent of the extracellular Ca2+ concentration ([Ca2+]o), whereas the rate of release is highly [Ca2+]o-dependent. Here, we examine the time course of release at inhibitory basket cell-Purkinje cell synapses and show that it is independent of [Ca2+]o. Modeling of Ca2+-dependent transmitter release suggests that the invariant time course of release critically depends on tight coupling between Ca2+ channels and release sensors. Experiments with exogenous Ca2+ chelators reveal that channel-sensor coupling at basket cell-Purkinje cell synapses is very tight, with a mean distance of 10–20 nm. Thus, tight channel-sensor coupling provides a mechanistic explanation for the apparent [Ca2+]o independence of the time course of release.}, author = {Arai, Itaru and Jonas, Peter M}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse}}, doi = {10.7554/eLife.04057}, volume = {3}, year = {2014}, } @article{2024, abstract = {The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.}, author = {Toshima, Junko and Nishinoaki, Show and Sato, Yoshifumi and Yamamoto, Wataru and Furukawa, Daiki and Siekhaus, Daria E and Sawaguchi, Akira and Toshima, Jiro}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole}}, doi = {10.1038/ncomms4498}, volume = {5}, year = {2014}, }