@article{1792, abstract = {Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology.}, author = {Pausinger, Florian and Svane, Anne}, journal = {Journal of Complexity}, number = {6}, pages = {773 -- 797}, publisher = {Academic Press}, title = {{A Koksma-Hlawka inequality for general discrepancy systems}}, doi = {10.1016/j.jco.2015.06.002}, volume = {31}, year = {2015}, } @phdthesis{1399, abstract = {This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold.}, author = {Pausinger, Florian}, issn = {2663-337X}, pages = {144}, publisher = {Institute of Science and Technology Austria}, title = {{On the approximation of intrinsic volumes}}, year = {2015}, } @article{1666, abstract = {Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics.}, author = {Tugrul, Murat and Paixao, Tiago and Barton, Nicholas H and Tkacik, Gasper}, journal = {PLoS Genetics}, number = {11}, publisher = {Public Library of Science}, title = {{Dynamics of transcription factor binding site evolution}}, doi = {10.1371/journal.pgen.1005639}, volume = {11}, year = {2015}, } @inproceedings{1502, abstract = {We extend the theory of input-output conformance with operators for merge and quotient. The former is useful when testing against multiple requirements or views. The latter can be used to generate tests for patches of an already tested system. Both operators can combine systems with different action alphabets, which is usually the case when constructing complex systems and specifications from parts, for instance different views as well as newly defined functionality of a~previous version of the system.}, author = {Beneš, Nikola and Daca, Przemyslaw and Henzinger, Thomas A and Kretinsky, Jan and Nickovic, Dejan}, isbn = {978-1-4503-3471-6}, location = {Montreal, QC, Canada}, pages = {101 -- 110}, publisher = {ACM}, title = {{Complete composition operators for IOCO-testing theory}}, doi = {10.1145/2737166.2737175}, year = {2015}, } @article{1501, abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph algorithms with quadratic complexity to compute the simulation relation. We present an automated technique for assume-guarantee style reasoning for compositional analysis of two-player games by giving a counterexample guided abstraction-refinement approach to compute our new simulation relation. We show a tight link between two-player games and MDPs, and as a consequence the results for games are lifted to MDPs with qualitative properties. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. }, author = {Chatterjee, Krishnendu and Chmelik, Martin and Daca, Przemyslaw}, journal = {Formal Methods in System Design}, number = {2}, pages = {230 -- 264}, publisher = {Springer}, title = {{CEGAR for compositional analysis of qualitative properties in Markov decision processes}}, doi = {10.1007/s10703-015-0235-2}, volume = {47}, year = {2015}, } @article{1602, abstract = {Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, etc. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in a very important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect that we consider is that the control flow graphs for most programs have constant treewidth. Our main contributions are simple and implementable algorithms that supportmultiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing, but can answer subsequent queries significantly faster as compared to the current best-known solutions for several important problems, such as interprocedural reachability and shortest path. We provide a prototype implementation for interprocedural reachability and intraprocedural shortest path that gives a significant speed-up on several benchmarks.}, author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas and Goyal, Prateesh}, journal = {ACM SIGPLAN Notices}, location = {Mumbai, India}, number = {1}, pages = {97 -- 109}, publisher = {ACM}, title = {{Faster algorithms for algebraic path properties in recursive state machines with constant treewidth}}, doi = {10.1145/2676726.2676979}, volume = {50}, year = {2015}, } @article{1604, abstract = {We consider the quantitative analysis problem for interprocedural control-flow graphs (ICFGs). The input consists of an ICFG, a positive weight function that assigns every transition a positive integer-valued number, and a labelling of the transitions (events) as good, bad, and neutral events. The weight function assigns to each transition a numerical value that represents ameasure of how good or bad an event is. The quantitative analysis problem asks whether there is a run of the ICFG where the ratio of the sum of the numerical weights of good events versus the sum of weights of bad events in the long-run is at least a given threshold (or equivalently, to compute the maximal ratio among all valid paths in the ICFG). The quantitative analysis problem for ICFGs can be solved in polynomial time, and we present an efficient and practical algorithm for the problem. We show that several problems relevant for static program analysis, such as estimating the worst-case execution time of a program or the average energy consumption of a mobile application, can be modeled in our framework. We have implemented our algorithm as a tool in the Java Soot framework. We demonstrate the effectiveness of our approach with two case studies. First, we show that our framework provides a sound approach (no false positives) for the analysis of inefficiently-used containers. Second, we show that our approach can also be used for static profiling of programs which reasons about methods that are frequently invoked. Our experimental results show that our tool scales to relatively large benchmarks, and discovers relevant and useful information that can be used to optimize performance of the programs.}, author = {Chatterjee, Krishnendu and Pavlogiannis, Andreas and Velner, Yaron}, isbn = {978-1-4503-3300-9}, journal = {Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT }, location = {Mumbai, India}, number = {1}, pages = {539 -- 551}, publisher = {ACM}, title = {{Quantitative interprocedural analysis}}, doi = {10.1145/2676726.2676968}, volume = {50}, year = {2015}, } @inproceedings{1607, abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m=O(n)) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of ϵ in time O(n⋅log(n/ϵ)) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O(n⋅log(|a⋅b|))=O(n⋅log(n⋅W)), when the output is ab, as compared to the previously best known algorithm with running time O(n2⋅log(n⋅W)). Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O(n2⋅m) time and the associated decision problem can be solved in O(n⋅m) time, improving the previous known O(n3⋅m⋅log(n⋅W)) and O(n2⋅m) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O(n⋅logn) time, improving the previous known O(n4⋅log(n⋅W)) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.}, author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas}, location = {San Francisco, CA, USA}, pages = {140 -- 157}, publisher = {Springer}, title = {{Faster algorithms for quantitative verification in constant treewidth graphs}}, doi = {10.1007/978-3-319-21690-4_9}, volume = {9206}, year = {2015}, } @inproceedings{1714, abstract = {We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm-deadline real-time tasks based on multi-objective graphs: Given a task set and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. A clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including Dover, that have been proposed in the past, for various task sets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are task sets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application.}, author = {Chatterjee, Krishnendu and Pavlogiannis, Andreas and Kößler, Alexander and Schmid, Ulrich}, booktitle = {Real-Time Systems Symposium}, location = {Rome, Italy}, number = {January}, pages = {118 -- 127}, publisher = {IEEE}, title = {{A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks}}, doi = {10.1109/RTSS.2014.9}, volume = {2015}, year = {2015}, } @inproceedings{1633, abstract = {We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front. Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation. Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.}, author = {Hahn, David and Wojtan, Christopher J}, location = {Los Angeles, CA, United States}, number = {4}, publisher = {ACM}, title = {{High-resolution brittle fracture simulation with boundary elements}}, doi = {10.1145/2766896}, volume = {34}, year = {2015}, }