@article{13395, abstract = {Metallic nanoparticles co-functionalised with monolayers of UV- and CO2-sensitive ligands were prepared and shown to respond to these two types of stimuli reversibly and in an orthogonal fashion. The composition of the coating could be tailored to yield nanoparticles capable of aggregating exclusively when both UV and CO2 were applied at the same time, analogously to the behaviour of an AND logic gate.}, author = {Lee, Ji-Woong and Klajn, Rafal}, issn = {1364-548X}, journal = {Chemical Communications}, keywords = {Materials Chemistry, Metals and Alloys, Surfaces, Coatings and Films, General Chemistry, Ceramics and Composites, Electronic, Optical and Magnetic Materials, Catalysis}, number = {11}, pages = {2036--2039}, publisher = {Royal Society of Chemistry}, title = {{Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2}}, doi = {10.1039/c4cc08541h}, volume = {51}, year = {2015}, } @article{13396, abstract = {Photoswitching in densely packed azobenzene self-assembled monolayers (SAMs) is strongly affected by steric constraints and excitonic coupling between neighboring chromophores. Therefore, control of the chromophore density is essential for enhancing and manipulating the photoisomerization yield. We systematically compare two methods to achieve this goal: First, we assemble monocomponent azobenzene–alkanethiolate SAMs on gold nanoparticles of varying size. Second, we form mixed SAMs of azobenzene–alkanethiolates and “dummy” alkanethiolates on planar substrates. Both methods lead to a gradual decrease of the chromophore density and enable efficient photoswitching with low-power light sources. X-ray spectroscopy reveals that coadsorption from solution yields mixtures with tunable composition. The orientation of the chromophores with respect to the surface normal changes from a tilted to an upright position with increasing azobenzene density. For both systems, optical spectroscopy reveals a pronounced excitonic shift that increases with the chromophore density. In spite of exciting the optical transition of the monomer, the main spectral change in mixed SAMs occurs in the excitonic band. In addition, the photoisomerization yield decreases only slightly by increasing the azobenzene–alkanethiolate density, and we observed photoswitching even with minor dilutions. Unlike in solution, azobenzene in the planar SAM can be switched back almost completely by optical excitation from the cis to the original trans state within a short time scale. These observations indicate cooperativity in the photoswitching process of mixed SAMs.}, author = {Moldt, Thomas and Brete, Daniel and Przyrembel, Daniel and Das, Sanjib and Goldman, Joel R. and Kundu, Pintu K. and Gahl, Cornelius and Klajn, Rafal and Weinelt, Martin}, issn = {1520-5827}, journal = {Langmuir}, keywords = {Electrochemistry, Spectroscopy, Surfaces and Interfaces, Condensed Matter Physics, General Materials Science}, number = {3}, pages = {1048--1057}, publisher = {American Chemical Society}, title = {{Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature}}, doi = {10.1021/la504291n}, volume = {31}, year = {2015}, } @article{13397, abstract = {Self-assembly of inorganic nanoparticles has been studied extensively for particles having different sizes and compositions. However, relatively little attention has been devoted to how the shape and surface chemistry of magnetic nanoparticles affects their self-assembly properties. Here, we undertook a combined experiment–theory study aimed at better understanding of the self-assembly of cubic magnetite (Fe3O4) particles. We demonstrated that, depending on the experimental parameters, such as the direction of the magnetic field and nanoparticle density, a variety of superstructures can be obtained, including one-dimensional filaments and helices, as well as C-shaped assemblies described here for the first time. Furthermore, we functionalized the surfaces of the magnetic nanocubes with light-sensitive ligands. Using these modified nanoparticles, we were able to achieve orthogonal control of self-assembly using a magnetic field and light.}, author = {Singh, Gurvinder and Chan, Henry and Udayabhaskararao, T. and Gelman, Elijah and Peddis, Davide and Baskin, Artem and Leitus, Gregory and Král, Petr and Klajn, Rafal}, issn = {1364-5498}, journal = {Faraday Discussions}, keywords = {Physical and Theoretical Chemistry}, pages = {403--421}, publisher = {Royal Society of Chemistry}, title = {{Magnetic field-induced self-assembly of iron oxide nanocubes}}, doi = {10.1039/c4fd00265b}, volume = {181}, year = {2015}, } @article{13398, author = {Sun, Yugang and Scarabelli, Leonardo and Kotov, Nicholas and Tebbe, Moritz and Lin, Xiao-Min and Brullot, Ward and Isa, Lucio and Schurtenberger, Peter and Moehwald, Helmuth and Fedin, Igor and Velev, Orlin and Faivre, Damien and Sorensen, Christopher and Perzynski, Régine and Chanana, Munish and Li, Zhihai and Bresme, Fernando and Král, Petr and Firlar, Emre and Schiffrin, David and Souza Junior, Joao Batista and Fery, Andreas and Shevchenko, Elena and Tarhan, Ozgur and Alivisatos, Armand Paul and Disch, Sabrina and Klajn, Rafal and Ghosh, Suvojit}, issn = {1364-5498}, journal = {Faraday Discussions}, keywords = {Physical and Theoretical Chemistry}, pages = {463--479}, publisher = {Royal Society of Chemistry}, title = {{Field-assisted self-assembly process: General discussion}}, doi = {10.1039/c5fd90041g}, volume = {181}, year = {2015}, } @article{14017, abstract = {The detection of electron motion and electronic wave-packet dynamics is one of the core goals of attosecond science. Recently, choosing the nitric oxide molecule as an example, we have introduced and demonstrated an experimental approach to measure coupled valence electronic and rotational wave packets using high-order-harmonic-generation (HHG) spectroscopy [Kraus et al., Phys. Rev. Lett. 111, 243005 (2013)]. A short outline of the theory to describe the combination of the pump and HHG probe process was published together with an extensive discussion of experimental results [Baykusheva et al., Faraday Discuss. 171, 113 (2014)]. The comparison of theory and experiment showed good agreement on a quantitative level. Here, we present the theory in detail, which is based on a generalized density-matrix approach that describes the pump process and the subsequent probing of the wave packets by a semiclassical quantitative rescattering approach. An in-depth analysis of the different Raman scattering contributions to the creation of the coupled rotational and electronic spin-orbit wave packets is made. We present results for parallel and perpendicular linear polarizations of the pump and probe laser pulses. Furthermore, an analysis of the combined rotational-electronic density matrix in terms of irreducible components is presented that facilitates interpretation of the results.}, author = {Zhang, Song Bin and Baykusheva, Denitsa Rangelova and Kraus, Peter M. and Wörner, Hans Jakob and Rohringer, Nina}, issn = {1094-1622}, journal = {Physical Review A}, keywords = {Atomic and Molecular Physics, and Optics}, number = {2}, publisher = {American Physical Society}, title = {{Theoretical study of molecular electronic and rotational coherences by high-order-harmonic generation}}, doi = {10.1103/physreva.91.023421}, volume = {91}, year = {2015}, } @article{14016, abstract = {All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light–matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies.}, author = {Kraus, P. M. and Tolstikhin, O. I. and Baykusheva, Denitsa Rangelova and Rupenyan, A. and Schneider, J. and Bisgaard, C. Z. and Morishita, T. and Jensen, F. and Madsen, L. B. and Wörner, H. J.}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{Observation of laser-induced electronic structure in oriented polyatomic molecules}}, doi = {10.1038/ncomms8039}, volume = {6}, year = {2015}, } @article{14013, abstract = {The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi-field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes.}, author = {Kraus, P. M. and Mignolet, B. and Baykusheva, Denitsa Rangelova and Rupenyan, A. and Horný, L. and Penka, E. F. and Grassi, G. and Tolstikhin, O. I. and Schneider, J. and Jensen, F. and Madsen, L. B. and Bandrauk, A. D. and Remacle, F. and Wörner, H. J.}, issn = {1095-9203}, journal = {Science}, keywords = {Multidisciplinary}, number = {6262}, pages = {790--795}, publisher = {American Association for the Advancement of Science}, title = {{Measurement and laser control of attosecond charge migration in ionized iodoacetylene}}, doi = {10.1126/science.aab2160}, volume = {350}, year = {2015}, } @article{14015, abstract = {We advance high-harmonic spectroscopy to resolve molecular charge migration in time and space and simultaneously demonstrate extensive control over the process. A multidimensional approach enables us to reconstruct both quantum amplitudes and phases with a resolution of better than 100 attoseconds and to separately reconstruct field-free and laser- driven charge migration. Our techniques make charge migration in molecules measurable on the attosecond time scale and open new avenues for laser control of electronic primary processes.}, author = {Kraus, P M and Mignolet, B and Baykusheva, Denitsa Rangelova and Rupenyan, A and Horný, L and Penka, E F and Tolstikhin, O I and Schneider, J and Jensen, F and Madsen, L B and Bandrauk, A D and Remacle, F and Wörner, H J}, issn = {1742-6596}, journal = {Journal of Physics: Conference Series}, keywords = {General Physics and Astronomy}, number = {11}, publisher = {IOP Publishing}, title = {{Attosecond charge migration and its laser control}}, doi = {10.1088/1742-6596/635/11/112136}, volume = {635}, year = {2015}, } @article{14014, abstract = {We have studied a coupled electronic-nuclear wave packet in nitric oxide using time-resolved strong-field photoelectron holography and rescattering. We show that the electronic dynamics mainly appears in the holographic structures whereas nuclear motion strongly modulates the angular distribution of the rescattered photoelectrons.}, author = {Walt, Samuel G and Ram, N Bhargava and von Conta, Aaron and Baykusheva, Denitsa Rangelova and Atala, Marcos and Wörner, Hans Jakob}, issn = {1742-6596}, journal = {Journal of Physics: Conference Series}, keywords = {General Physics and Astronomy}, number = {11}, publisher = {IOP Publishing}, title = {{Resolving the dynamics of valence-shell electrons and nuclei through laser-induced diffraction and holography}}, doi = {10.1088/1742-6596/635/11/112135}, volume = {635}, year = {2015}, } @misc{9719, abstract = {Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.}, author = {Wielgoss, Sébastien and Bergmiller, Tobias and Bischofberger, Anna M. and Hall, Alex R.}, publisher = {Dryad}, title = {{Data from: Adaptation to parasites and costs of parasite resistance in mutator and non-mutator bacteria}}, doi = {10.5061/dryad.cj910}, year = {2015}, }