@article{14517, abstract = {State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. }, author = {Zemlicka, Martin and Redchenko, Elena and Peruzzo, Matilda and Hassani, Farid and Trioni, Andrea and Barzanjeh, Shabir and Fink, Johannes M}, issn = {2331-7019}, journal = {Physical Review Applied}, number = {4}, publisher = {American Physical Society}, title = {{Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses}}, doi = {10.1103/PhysRevApplied.20.044054}, volume = {20}, year = {2023}, } @article{14515, abstract = {Most natural and engineered information-processing systems transmit information via signals that vary in time. Computing the information transmission rate or the information encoded in the temporal characteristics of these signals requires the mutual information between the input and output signals as a function of time, i.e., between the input and output trajectories. Yet, this is notoriously difficult because of the high-dimensional nature of the trajectory space, and all existing techniques require approximations. We present an exact Monte Carlo technique called path weight sampling (PWS) that, for the first time, makes it possible to compute the mutual information between input and output trajectories for any stochastic system that is described by a master equation. The principal idea is to use the master equation to evaluate the exact conditional probability of an individual output trajectory for a given input trajectory and average this via Monte Carlo sampling in trajectory space to obtain the mutual information. We present three variants of PWS, which all generate the trajectories using the standard stochastic simulation algorithm. While direct PWS is a brute-force method, Rosenbluth-Rosenbluth PWS exploits the analogy between signal trajectory sampling and polymer sampling, and thermodynamic integration PWS is based on a reversible work calculation in trajectory space. PWS also makes it possible to compute the mutual information between input and output trajectories for systems with hidden internal states as well as systems with feedback from output to input. Applying PWS to the bacterial chemotaxis system, consisting of 182 coupled chemical reactions, demonstrates not only that the scheme is highly efficient but also that the number of receptor clusters is much smaller than hitherto believed, while their size is much larger.}, author = {Reinhardt, Manuel and Tkačik, Gašper and Ten Wolde, Pieter Rein}, issn = {2160-3308}, journal = {Physical Review X}, number = {4}, publisher = {American Physical Society}, title = {{Path weight sampling: Exact Monte Carlo computation of the mutual information between stochastic trajectories}}, doi = {10.1103/PhysRevX.13.041017}, volume = {13}, year = {2023}, } @article{14514, abstract = {The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is characterized by Hertzian behavior of the solid’s underbelly and derive how the float height scales with materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments, and point to the design of novel soft machines.}, author = {Binysh, Jack and Chakraborty, Indrajit and Chubynsky, Mykyta V. and Diaz Melian, Vicente L and Waitukaitis, Scott R and Sprittles, James E. and Souslov, Anton}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {16}, publisher = {American Physical Society}, title = {{Modeling Leidenfrost levitation of soft elastic solids}}, doi = {10.1103/PhysRevLett.131.168201}, volume = {131}, year = {2023}, } @misc{14523, abstract = {see Readme file}, author = {Binysh, Jack and Chakraborty, Indrajit and Chubynsky, Mykyta and Diaz Melian, Vicente L and Waitukaitis, Scott R and Sprittles, James and Souslov, Anton}, publisher = {Zenodo}, title = {{SouslovLab/PRL2023-ModellingLeidenfrostLevitationofSoftElasticSolids: v1.0.1}}, doi = {10.5281/ZENODO.8329143}, year = {2023}, } @inproceedings{14518, abstract = {We consider bidding games, a class of two-player zero-sum graph games. The game proceeds as follows. Both players have bounded budgets. A token is placed on a vertex of a graph, in each turn the players simultaneously submit bids, and the higher bidder moves the token, where we break bidding ties in favor of Player 1. Player 1 wins the game iff the token visits a designated target vertex. We consider, for the first time, poorman discrete-bidding in which the granularity of the bids is restricted and the higher bid is paid to the bank. Previous work either did not impose granularity restrictions or considered Richman bidding (bids are paid to the opponent). While the latter mechanisms are technically more accessible, the former is more appealing from a practical standpoint. Our study focuses on threshold budgets, which is the necessary and sufficient initial budget required for Player 1 to ensure winning against a given Player 2 budget. We first show existence of thresholds. In DAGs, we show that threshold budgets can be approximated with error bounds by thresholds under continuous-bidding and that they exhibit a periodic behavior. We identify closed-form solutions in special cases. We implement and experiment with an algorithm to find threshold budgets.}, author = {Avni, Guy and Meggendorfer, Tobias and Sadhukhan, Suman and Tkadlec, Josef and Zikelic, Dorde}, booktitle = {Frontiers in Artificial Intelligence and Applications}, isbn = {9781643684369}, issn = {0922-6389}, location = {Krakow, Poland}, pages = {141--148}, publisher = {IOS Press}, title = {{Reachability poorman discrete-bidding games}}, doi = {10.3233/FAIA230264}, volume = {372}, year = {2023}, } @article{13096, abstract = {Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1,2,3,4,5,6,7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.}, author = {Degen, Morris and Santos, José Carlos and Pluhackova, Kristyna and Cebrero, Gonzalo and Ramos, Saray and Jankevicius, Gytis and Hartenian, Ella and Guillerm, Undina and Mari, Stefania A. and Kohl, Bastian and Müller, Daniel J. and Schanda, Paul and Maier, Timm and Perez, Camilo and Sieben, Christian and Broz, Petr and Hiller, Sebastian}, issn = {1476-4687}, journal = {Nature}, pages = {1065--1071}, publisher = {Springer Nature}, title = {{Structural basis of NINJ1-mediated plasma membrane rupture in cell death}}, doi = {10.1038/s41586-023-05991-z}, volume = {618}, year = {2023}, } @article{13041, abstract = {A series of triarylamines was synthesised and screened for their suitability as catholytes in redox flow batteries using cyclic voltammetry (CV). Tris(4-aminophenyl)amine was found to be the strongest candidate. Solubility and initial electrochemical performance were promising; however, polymerisation was observed during electrochemical cycling leading to rapid capacity fade prescribed to a loss of accessible active material and the limitation of ion transport processes within the cell. A mixed electrolyte system of H3PO4 and HCl was found to inhibit polymerisation producing oligomers that consumed less active material reducing rates of degradation in the redox flow battery. Under these conditions Coulombic efficiency improved by over 4 %, the maximum number of cycles more than quadrupled and an additional theoretical capacity of 20 % was accessed. This paper is, to our knowledge, the first example of triarylamines as catholytes in all-aqueous redox flow batteries and emphasises the impact supporting electrolytes can have on electrochemical performance.}, author = {Farag, Nadia L. and Jethwa, Rajesh B and Beardmore, Alice E. and Insinna, Teresa and O'Keefe, Christopher A. and Klusener, Peter A.A. and Grey, Clare P. and Wright, Dominic S.}, issn = {1864-564X}, journal = {ChemSusChem}, number = {13}, publisher = {Wiley}, title = {{Triarylamines as catholytes in aqueous organic redox flow batteries}}, doi = {10.1002/cssc.202300128}, volume = {16}, year = {2023}, } @article{13118, abstract = {Under high pressures and temperatures, molecular systems with substantial polarization charges, such as ammonia and water, are predicted to form superionic phases and dense fluid states with dissociating molecules and high electrical conductivity. This behaviour potentially plays a role in explaining the origin of the multipolar magnetic fields of Uranus and Neptune, whose mantles are thought to result from a mixture of H2O, NH3 and CH4 ices. Determining the stability domain, melting curve and electrical conductivity of these superionic phases is therefore crucial for modelling planetary interiors and dynamos. Here we report the melting curve of superionic ammonia up to 300 GPa from laser-driven shock compression of pre-compressed samples and atomistic calculations. We show that ammonia melts at lower temperatures than water above 100 GPa and that fluid ammonia’s electrical conductivity exceeds that of water at conditions predicted by hot, super-adiabatic models for Uranus and Neptune, and enhances the conductivity in their fluid water-rich dynamo layers.}, author = {Hernandez, J.-A. and Bethkenhagen, Mandy and Ninet, S. and French, M. and Benuzzi-Mounaix, A. and Datchi, F. and Guarguaglini, M. and Lefevre, F. and Occelli, F. and Redmer, R. and Vinci, T. and Ravasio, A.}, issn = {1745-2481}, journal = {Nature Physics}, pages = {1280--1285}, publisher = {Springer Nature}, title = {{Melting curve of superionic ammonia at planetary interior conditions}}, doi = {10.1038/s41567-023-02074-8}, volume = {19}, year = {2023}, } @article{13119, abstract = {A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and Bose–Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.}, author = {Helson, Victor and Zwettler, Timo and Mivehvar, Farokh and Colella, Elvia and Roux, Kevin Etienne Robert and Konishi, Hideki and Ritsch, Helmut and Brantut, Jean Philippe}, issn = {1476-4687}, journal = {Nature}, pages = {716--720}, publisher = {Springer Nature}, title = {{Density-wave ordering in a unitary Fermi gas with photon-mediated interactions}}, doi = {10.1038/s41586-023-06018-3}, volume = {618}, year = {2023}, } @article{12911, abstract = {This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite-dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground-state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.}, author = {Feliciangeli, Dario and Gerolin, Augusto and Portinale, Lorenzo}, issn = {1096-0783}, journal = {Journal of Functional Analysis}, number = {4}, publisher = {Elsevier}, title = {{A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature}}, doi = {10.1016/j.jfa.2023.109963}, volume = {285}, year = {2023}, }