@inproceedings{2051,
abstract = {We show that the usual score function for conditional Markov networks can be written as the expectation over the scores of their spanning trees. We also show that a small random sample of these output trees can attain a significant fraction of the margin obtained by the complete graph and we provide conditions under which we can perform tractable inference. The experimental results confirm that practical learning is scalable to realistic datasets using this approach.},
author = {Marchand, Mario and Hongyu, Su and Emilie Morvant and Rousu, Juho and Shawe-Taylor, John},
publisher = {Neural Information Processing Systems},
title = {{Multilabel structured output learning with random spanning trees of max-margin Markov networks}},
year = {2014},
}
@inproceedings{2052,
abstract = {A standard technique for solving the parameterized model checking problem is to reduce it to the classic model checking problem of finitely many finite-state systems. This work considers some of the theoretical power and limitations of this technique. We focus on concurrent systems in which processes communicate via pairwise rendezvous, as well as the special cases of disjunctive guards and token passing; specifications are expressed in indexed temporal logic without the next operator; and the underlying network topologies are generated by suitable Monadic Second Order Logic formulas and graph operations. First, we settle the exact computational complexity of the parameterized model checking problem for some of our concurrent systems, and establish new decidability results for others. Second, we consider the cases that model checking the parameterized system can be reduced to model checking some fixed number of processes, the number is known as a cutoff. We provide many cases for when such cutoffs can be computed, establish lower bounds on the size of such cutoffs, and identify cases where no cutoff exists. Third, we consider cases for which the parameterized system is equivalent to a single finite-state system (more precisely a Büchi word automaton), and establish tight bounds on the sizes of such automata.},
author = {Aminof, Benjamin and Kotek, Tomer and Rubin, Sacha and Spegni, Francesco and Veith, Helmut},
booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
editor = {Baldan, Paolo and Gorla, Daniele},
location = {Rome, Italy},
pages = {109 -- 124},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Parameterized model checking of rendezvous systems}},
doi = {10.1007/978-3-662-44584-6_9},
volume = {8704},
year = {2014},
}
@inproceedings{2053,
abstract = {In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a longstanding open problem concerning the representation of memoryless continuous time by memoryfull continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems.},
author = {Hermanns, Holger and Krčál, Jan and Kretinsky, Jan},
booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
editor = {Baldan, Paolo and Gorla, Daniele},
location = {Rome, Italy},
pages = {249 -- 265},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Probabilistic bisimulation: Naturally on distributions}},
doi = {10.1007/978-3-662-44584-6_18},
volume = {8704},
year = {2014},
}
@inproceedings{2054,
abstract = {We study two-player concurrent games on finite-state graphs played for an infinite number of rounds, where in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. The objectives are ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respectively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). While the qualitative analysis problem for concurrent parity games with infinite-memory, infinite-precision randomized strategies was studied before, we study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision, or infinite-precision; and in terms of memory, strategies can be memoryless, finite-memory, or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in (n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. Our symbolic algorithms are based on a characterization of the winning sets as μ-calculus formulas, however, our μ-calculus formulas are crucially different from the ones for concurrent parity games (without bounded rationality); and our memoryless witness strategy constructions are significantly different from the infinite-memory witness strategy constructions for concurrent parity games.},
author = {Chatterjee, Krishnendu},
booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
editor = {Baldan, Paolo and Gorla, Daniele},
location = {Rome, Italy},
pages = {544 -- 559},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Qualitative concurrent parity games: Bounded rationality}},
doi = {10.1007/978-3-662-44584-6_37},
volume = {8704},
year = {2014},
}
@article{2056,
abstract = {We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.},
author = {Ganguly, Arnab and Petrov, Tatjana and Koeppl, Heinz},
journal = {Journal of Mathematical Biology},
number = {3},
pages = {767 -- 797},
publisher = {Springer},
title = {{Markov chain aggregation and its applications to combinatorial reaction networks}},
doi = {10.1007/s00285-013-0738-7},
volume = {69},
year = {2014},
}
@inproceedings{2057,
abstract = {In the past few years, a lot of attention has been devoted to multimedia indexing by fusing multimodal informations. Two kinds of fusion schemes are generally considered: The early fusion and the late fusion. We focus on late classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the machine learning PAC-Bayesian theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while maximizing the voters’ diversity. We propose an extension of MinCq tailored to multimedia indexing. Our method is based on an order-preserving pairwise loss adapted to ranking that allows us to improve Mean Averaged Precision measure while taking into account the diversity of the voters that we want to fuse. We provide evidence that this method is naturally adapted to late fusion procedures and confirm the good behavior of our approach on the challenging PASCAL VOC’07 benchmark.},
author = {Morvant, Emilie and Habrard, Amaury and Ayache, Stéphane},
booktitle = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
location = {Joensuu, Finland},
pages = {153 -- 162},
publisher = {Springer},
title = {{Majority vote of diverse classifiers for late fusion}},
doi = {10.1007/978-3-662-44415-3_16},
volume = {8621},
year = {2014},
}
@inproceedings{2058,
abstract = {We present a method for smoothly blending between existing liquid animations. We introduce a semi-automatic method for matching two existing liquid animations, which we use to create new fluid motion that plausibly interpolates the input. Our contributions include a new space-time non-rigid iterative closest point algorithm that incorporates user guidance, a subsampling technique for efficient registration of meshes with millions of vertices, and a fast surface extraction algorithm that produces 3D triangle meshes from a 4D space-time surface. Our technique can be used to instantly create hundreds of new simulations, or to interactively explore complex parameter spaces. Our method is guaranteed to produce output that does not deviate from the input animations, and it generalizes to multiple dimensions. Because our method runs at interactive rates after the initial precomputation step, it has potential applications in games and training simulations.},
author = {Raveendran, Karthik and Wojtan, Christopher J and Thuerey, Nils and Türk, Greg},
booktitle = {ACM Transactions on Graphics},
location = {Vancouver, Canada},
number = {4},
publisher = {ACM},
title = {{Blending liquids}},
doi = {10.1145/2601097.2601126},
volume = {33},
year = {2014},
}
@article{2059,
abstract = {Plant embryogenesis is regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients during microspore embryogenesis remain to be identified. For the first time, we describe, using the DR5 or DR5rev reporter gene systems, the GFP- and GUS-based auxin biosensors to monitor auxin during Brassica napus androgenesis at cellular resolution in the initial stages. Our study provides evidence that the distribution of auxin changes during embryo development and depends on the temperature-inducible in vitro culture conditions. For this, microspores (mcs) were induced to embryogenesis by heat treatment and then subjected to genetic modification via Agrobacterium tumefaciens. The duration of high temperature treatment had a significant influence on auxin distribution in isolated and in vitro-cultured microspores and on microspore-derived embryo development. In the “mild” heat-treated (1 day at 32 °C) mcs, auxin localized in a polar way already at the uni-nucleate microspore, which was critical for the initiation of embryos with suspensor-like structure. Assuming a mean mcs radius of 20 μm, endogenous auxin content in a single cell corresponded to concentration of 1.01 μM. In mcs subjected to a prolonged heat (5 days at 32 °C), although auxin concentration increased dozen times, auxin polarization was set up at a few-celled pro-embryos without suspensor. Those embryos were enclosed in the outer wall called the exine. The exine rupture was accompanied by the auxin gradient polarization. Relative quantitative estimation of auxin, using time-lapse imaging, revealed that primordia possess up to 1.3-fold higher amounts than those found in the root apices of transgenic MDEs in the presence of exogenous auxin. Our results show, for the first time, which concentration of endogenous auxin coincides with the first cell division and how the high temperature interplays with auxin, by what affects delay early establishing microspore polarity. Moreover, we present how the local auxin accumulation demonstrates the apical–basal axis formation of the androgenic embryo and directs the axiality of the adult haploid plant.},
author = {Dubas, Ewa and Moravčíková, Jana and Libantová, Jana and Matušíková, Ildikó and Benková, Eva and Zur, Iwona and Krzewska, Monika},
journal = {Protoplasma},
number = {5},
pages = {1077 -- 1087},
publisher = {Springer},
title = {{The influence of heat stress on auxin distribution in transgenic B napus microspores and microspore derived embryos}},
doi = {10.1007/s00709-014-0616-1},
volume = {251},
year = {2014},
}
@article{2061,
abstract = {Development of cambium and its activity is important for our knowledge of the mechanism of secondary growth. Arabidopsis thaliana emerges as a good model plant for such a kind of study. Thus, this paper reports on cellular events taking place in the interfascicular regions of inflorescence stems of A. thaliana, leading to the development of interfascicular cambium from differentiated interfascicular parenchyma cells (IPC). These events are as follows: appearance of auxin accumulation, PIN1 gene expression, polar PIN1 protein localization in the basal plasma membrane and periclinal divisions. Distribution of auxin was observed to be higher in differentiating into cambium parenchyma cells compared to cells within the pith and cortex. Expression of PIN1 in IPC was always preceded by auxin accumulation. Basal localization of PIN1 was already established in the cells prior to their periclinal division. These cellular events initiated within parenchyma cells adjacent to the vascular bundles and successively extended from that point towards the middle region of the interfascicular area, located between neighboring vascular bundles. The final consequence of which was the closure of the cambial ring within the stem. Changes in the chemical composition of IPC walls were also detected and included changes of pectic epitopes, xyloglucans (XG) and extensins rich in hydroxyproline (HRGPs). In summary, results presented in this paper describe interfascicular cambium ontogenesis in terms of successive cellular events in the interfascicular regions of inflorescence stems of Arabidopsis.},
author = {Mazur, Ewa and Kurczyñska, Ewa and Friml, Jiří},
journal = {Protoplasma},
number = {5},
pages = {1125 -- 1139},
publisher = {Springer},
title = {{Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis}},
doi = {10.1007/s00709-014-0620-5},
volume = {251},
year = {2014},
}
@article{2062,
abstract = {The success story of fast-spiking, parvalbumin-positive (PV+) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV+ interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the “small world” of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV+ interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV+ interneurons for therapeutic purposes.},
author = {Hu, Hua and Gan, Jian and Jonas, Peter M},
journal = {Science},
number = {6196},
publisher = {American Association for the Advancement of Science},
title = {{Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function}},
doi = {10.1126/science.1255263},
volume = {345},
year = {2014},
}