@article{1635,
abstract = {We calculate a Ricci curvature lower bound for some classical examples of random walks, namely, a chain on a slice of the n-dimensional discrete cube (the so-called Bernoulli-Laplace model) and the random transposition shuffle of the symmetric group of permutations on n letters.},
author = {Erbar, Matthias and Maas, Jan and Tetali, Prasad},
journal = {Annales de la faculté des sciences de Toulouse},
number = {4},
pages = {781 -- 800},
publisher = {Univ. Paul Sabatier},
title = {{Discrete Ricci curvature bounds for Bernoulli-Laplace and random transposition models}},
doi = {10.5802/afst.1464},
volume = {24},
year = {2015},
}
@inproceedings{1636,
abstract = {Constraint Satisfaction Problem (CSP) is a fundamental algorithmic problem that appears in many areas of Computer Science. It can be equivalently stated as computing a homomorphism R→ΓΓ between two relational structures, e.g. between two directed graphs. Analyzing its complexity has been a prominent research direction, especially for the fixed template CSPs where the right side ΓΓ is fixed and the left side R is unconstrained.
Far fewer results are known for the hybrid setting that restricts both sides simultaneously. It assumes that R belongs to a certain class of relational structures (called a structural restriction in this paper). We study which structural restrictions are effective, i.e. there exists a fixed template ΓΓ (from a certain class of languages) for which the problem is tractable when R is restricted, and NP-hard otherwise. We provide a characterization for structural restrictions that are closed under inverse homomorphisms. The criterion is based on the chromatic number of a relational structure defined in this paper; it generalizes the standard chromatic number of a graph.
As our main tool, we use the algebraic machinery developed for fixed template CSPs. To apply it to our case, we introduce a new construction called a “lifted language”. We also give a characterization for structural restrictions corresponding to minor-closed families of graphs, extend results to certain Valued CSPs (namely conservative valued languages), and state implications for (valued) CSPs with ordered variables and for the maximum weight independent set problem on some restricted families of graphs.},
author = {Kolmogorov, Vladimir and Rolinek, Michal and Takhanov, Rustem},
location = {Nagoya, Japan},
pages = {566 -- 577},
publisher = {Springer},
title = {{Effectiveness of structural restrictions for hybrid CSPs}},
doi = {10.1007/978-3-662-48971-0_48},
volume = {9472},
year = {2015},
}
@inproceedings{1637,
abstract = {An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P ≠ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in {0, ∞} corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Zivny. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.},
author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal},
location = {Berkeley, CA, United States},
pages = {1246 -- 1258},
publisher = {IEEE},
title = {{The complexity of general-valued CSPs}},
doi = {10.1109/FOCS.2015.80},
year = {2015},
}
@article{1638,
abstract = {The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.},
author = {Sazanov, Leonid A},
journal = {Nature Reviews Molecular Cell Biology},
number = {6},
pages = {375 -- 388},
publisher = {Nature Publishing Group},
title = {{A giant molecular proton pump: structure and mechanism of respiratory complex I}},
doi = {10.1038/nrm3997},
volume = {16},
year = {2015},
}
@article{1639,
abstract = {In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.},
author = {Maas, Jan and Rumpf, Martin and Schönlieb, Carola and Simon, Stefan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
number = {6},
pages = {1745 -- 1769},
publisher = {EDP Sciences},
title = {{A generalized model for optimal transport of images including dissipation and density modulation}},
doi = {10.1051/m2an/2015043},
volume = {49},
year = {2015},
}
@article{1640,
abstract = {Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.},
author = {Šimášková, Mária and O'Brien, José and Khan-Djamei, Mamoona and Van Noorden, Giel and Ötvös, Krisztina and Vieten, Anne and De Clercq, Inge and Van Haperen, Johanna and Cuesta, Candela and Hoyerová, Klára and Vanneste, Steffen and Marhavy, Peter and Wabnik, Krzysztof T and Van Breusegem, Frank and Nowack, Moritz and Murphy, Angus and Friml, Jiřĺ and Weijers, Dolf and Beeckman, Tom and Benková, Eva},
journal = {Nature Communications},
publisher = {Nature Publishing Group},
title = {{Cytokinin response factors regulate PIN-FORMED auxin transporters}},
doi = {10.1038/ncomms9717},
volume = {6},
year = {2015},
}
@article{1642,
abstract = {The Hanani-Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani-Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident to at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm.},
author = {Fulek, Radoslav and Kynčl, Jan and Malinovič, Igor and Pálvölgyi, Dömötör},
journal = {Electronic Journal of Combinatorics},
number = {4},
publisher = {Electronic Journal of Combinatorics},
title = {{Clustered planarity testing revisited}},
volume = {22},
year = {2015},
}
@inproceedings{1644,
abstract = {Increasing the computational complexity of evaluating a hash function, both for the honest users as well as for an adversary, is a useful technique employed for example in password-based cryptographic schemes to impede brute-force attacks, and also in so-called proofs of work (used in protocols like Bitcoin) to show that a certain amount of computation was performed by a legitimate user. A natural approach to adjust the complexity of a hash function is to iterate it c times, for some parameter c, in the hope that any query to the scheme requires c evaluations of the underlying hash function. However, results by Dodis et al. (Crypto 2012) imply that plain iteration falls short of achieving this goal, and designing schemes which provably have such a desirable property remained an open problem. This paper formalizes explicitly what it means for a given scheme to amplify the query complexity of a hash function. In the random oracle model, the goal of a secure query-complexity amplifier (QCA) scheme is captured as transforming, in the sense of indifferentiability, a random oracle allowing R queries (for the adversary) into one provably allowing only r < R queries. Turned around, this means that making r queries to the scheme requires at least R queries to the actual random oracle. Second, a new scheme, called collision-free iteration, is proposed and proven to achieve c-fold QCA for both the honest parties and the adversary, for any fixed parameter c.},
author = {Demay, Grégory and Gazi, Peter and Maurer, Ueli and Tackmann, Björn},
location = {Lugano, Switzerland},
pages = {159 -- 180},
publisher = {Springer},
title = {{Query-complexity amplification for random oracles}},
doi = {10.1007/978-3-319-17470-9_10},
volume = {9063},
year = {2015},
}
@inproceedings{1645,
abstract = {Secret-key constructions are often proved secure in a model where one or more underlying components are replaced by an idealized oracle accessible to the attacker. This model gives rise to information-theoretic security analyses, and several advances have been made in this area over the last few years. This paper provides a systematic overview of what is achievable in this model, and how existing works fit into this view.},
author = {Gazi, Peter and Tessaro, Stefano},
booktitle = {2015 IEEE Information Theory Workshop},
location = {Jerusalem, Israel},
publisher = {IEEE},
title = {{Secret-key cryptography from ideal primitives: A systematic verview}},
doi = {10.1109/ITW.2015.7133163},
year = {2015},
}
@inproceedings{1646,
abstract = {A pseudorandom function (PRF) is a keyed function F : K × X → Y where, for a random key k ∈ K, the function F(k, ·) is indistinguishable from a uniformly random function, given black-box access. A key-homomorphic PRF has the additional feature that for any keys k, k' and any input x, we have F(k+k', x) = F(k, x)⊕F(k', x) for some group operations +,⊕ on K and Y, respectively. A constrained PRF for a family of setsS ⊆ P(X) has the property that, given any key k and set S ∈ S, one can efficiently compute a “constrained” key kS that enables evaluation of F(k, x) on all inputs x ∈ S, while the values F(k, x) for x /∈ S remain pseudorandom even given kS. In this paper we construct PRFs that are simultaneously constrained and key homomorphic, where the homomorphic property holds even for constrained keys. We first show that the multilinear map-based bit-fixing and circuit-constrained PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be keyhomomorphic. We then show that the LWE-based key-homomorphic PRFs of Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and associated group operation. Moreover, the constrained keys themselves are pseudorandom, and the constraining and evaluation functions can all be computed in low depth. As an application of key-homomorphic constrained PRFs,we construct a proxy re-encryption schemewith fine-grained access control. This scheme allows storing encrypted data on an untrusted server, where each file can be encrypted relative to some attributes, so that only parties whose constrained keys match the attributes can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts without learning anything about the plaintexts, thus permitting efficient and finegrained revocation.},
author = {Banerjee, Abishek and Fuchsbauer, Georg and Peikert, Chris and Pietrzak, Krzysztof Z and Stevens, Sophie},
location = {Warsaw, Poland},
pages = {31 -- 60},
publisher = {Springer},
title = {{Key-homomorphic constrained pseudorandom functions}},
doi = {10.1007/978-3-662-46497-7_2},
volume = {9015},
year = {2015},
}