@misc{5442,
abstract = {We study algorithmic questions for concurrent systems where the transitions are labeled from a complete, closed semiring, and path properties are algebraic with semiring operations. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural properties that arise in program analysis.
We consider that each component of the concurrent system is a graph with constant treewidth, and it is known that the controlflow graphs of most programs have constant treewidth. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis problems (e.g., alias analysis). The study of multiple queries allows us to consider the tradeoff between the resource usage of the \emph{one-time} preprocessing and for \emph{each individual} query. The traditional approaches construct the product graph of all components and apply the best-known graph algorithm on the product. In the traditional approach, even the answer to a single query requires the transitive closure computation (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time.
Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time,
each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results that show that the worst-case running times of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (such as improving
the worst-case bounds for the shortest path problem in general graphs whose current best-known bound has not been improved in five decades). Finally, we provide a prototype implementation of our algorithms which significantly outperforms the existing algorithmic methods on several benchmarks.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Algorithms for algebraic path properties in concurrent systems of constant treewidth components}},
year = {2015},
}
@article{6118,
abstract = {Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.},
author = {Fenk, Lorenz A. and de Bono, Mario},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
number = {27},
pages = {E3525--E3534},
publisher = {National Academy of Sciences},
title = {{Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity}},
doi = {10.1073/pnas.1423808112},
volume = {112},
year = {2015},
}
@article{6120,
abstract = {Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.},
author = {Laurent, Patrick and Soltesz, Zoltan and Nelson, Geoffrey M and Chen, Changchun and Arellano-Carbajal, Fausto and Levy, Emmanuel and de Bono, Mario},
issn = {2050-084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Decoding a neural circuit controlling global animal state in C. elegans}},
doi = {10.7554/elife.04241},
volume = {4},
year = {2015},
}
@inproceedings{1511,
abstract = {The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.},
author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
location = {Eindhoven, Netherlands},
pages = {476 -- 490},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result}},
doi = {10.4230/LIPIcs.SOCG.2015.476},
volume = {34 },
year = {2015},
}
@article{1619,
abstract = {The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.},
author = {Chevereau, Guillaume and Dravecka, Marta and Batur, Tugce and Guvenek, Aysegul and Ayhan, Dilay and Toprak, Erdal and Bollenbach, Mark Tobias},
journal = {PLoS Biology},
number = {11},
publisher = {Public Library of Science},
title = {{Quantifying the determinants of evolutionary dynamics leading to drug resistance}},
doi = {10.1371/journal.pbio.1002299},
volume = {13},
year = {2015},
}
@inproceedings{1637,
abstract = {An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P ≠ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in {0, ∞} corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Zivny. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.},
author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal},
location = {Berkeley, CA, United States},
pages = {1246 -- 1258},
publisher = {IEEE},
title = {{The complexity of general-valued CSPs}},
doi = {10.1109/FOCS.2015.80},
year = {2015},
}
@article{6507,
abstract = {The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2.},
author = {Zhou, Long and Hinerman, J. M. and Blaszczyk, M. and Miller, J. L. C. and Conrady, D. G. and Barrow, A. D. and Chirgadze, D. Y. and Bihan, D. and Farndale, R. W. and Herr, A. B.},
issn = {0006-4971},
journal = {Blood},
number = {5},
pages = {529--537},
publisher = {American Society of Hematology},
title = {{Structural basis for collagen recognition by the immune receptor OSCAR}},
doi = {10.1182/blood-2015-08-667055},
volume = {127},
year = {2015},
}
@article{1576,
abstract = {Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state.},
author = {Cepeda Humerez, Sarah A and Rieckh, Georg and Tkacik, Gasper},
journal = {Physical Review Letters},
number = {24},
publisher = {American Physical Society},
title = {{Stochastic proofreading mechanism alleviates crosstalk in transcriptional regulation}},
doi = {10.1103/PhysRevLett.115.248101},
volume = {115},
year = {2015},
}
@article{6736,
abstract = {Motivated by the significant performance gains which polar codes experience under successive cancellation list decoding, their scaling exponent is studied as a function of the list size. In particular, the error probability is fixed, and the tradeoff between the block length and back-off from capacity is analyzed. A lower bound is provided on the error probability under MAP decoding with list size L for any binary-input memoryless output-symmetric channel and for any class of linear codes such that their minimum distance is unbounded as the block length grows large. Then, it is shown that under MAP decoding, although the introduction of a list can significantly improve the involved constants, the scaling exponent itself, i.e., the speed at which capacity is approached, stays unaffected for any finite list size. In particular, this result applies to polar codes, since their minimum distance tends to infinity as the block length increases. A similar result is proved for genie-aided successive cancellation decoding when transmission takes place over the binary erasure channel, namely, the scaling exponent remains constant for any fixed number of helps from the genie. Note that since genie-aided successive cancellation decoding might be strictly worse than successive cancellation list decoding, the problem of establishing the scaling exponent of the latter remains open.},
author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {9},
pages = {4838--4851},
publisher = {IEEE},
title = {{Scaling exponent of list decoders with applications to polar codes}},
doi = {10.1109/tit.2015.2453315},
volume = {61},
year = {2015},
}
@article{6737,
abstract = {This paper presents polar coding schemes for the two-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of two-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a superpolynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. To align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and channel outputs. To remove these constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this paper are quite general, and they can be adopted to many other multiterminal scenarios whenever there polar indices need to be aligned.},
author = {Mondelli, Marco and Hassani, Hamed and Sason, Igal and Urbanke, Rudiger},
journal = {IEEE Transactions on Information Theory},
number = {2},
pages = {783--800},
publisher = {IEEE},
title = {{Achieving Marton’s region for broadcast channels using polar codes}},
doi = {10.1109/tit.2014.2368555},
volume = {61},
year = {2015},
}