@misc{5438,
abstract = {The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses.
The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
issn = {2664-1690},
pages = {15},
publisher = {IST Austria},
title = {{Edit distance for pushdown automata}},
doi = {10.15479/AT:IST-2015-334-v1-1},
year = {2015},
}
@misc{5439,
abstract = {The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata. },
author = {Boker, Udi and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{The target discounted-sum problem}},
doi = {10.15479/AT:IST-2015-335-v1-1},
year = {2015},
}
@misc{5432,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability.
Our main results are:
(1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure).
(2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.
},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v1-1},
year = {2015},
}
@misc{5440,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom for payoff in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. The fitness (or the reproductive rate) is a non-negative number, and depends on the payoff. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are as follows: First, we consider a special case of the general problem, where the residents do not reproduce. We show that the qualitative question is NP-complete, and the quantitative approximation question is #P-complete, and the hardness results hold even in the special case where the interaction and the replacement graphs coincide. Second, we show that in general both the qualitative and the quantitative approximation questions are PSPACE-complete. The PSPACE-hardness result for quantitative approximation holds even when the fitness is always positive.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v2-2},
year = {2015},
}
@misc{5443,
abstract = {POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIME-complete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Davies, Jessica},
issn = {2664-1690},
pages = {23},
publisher = {IST Austria},
title = {{A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs}},
doi = {10.15479/AT:IST-2015-325-v2-1},
year = {2015},
}
@misc{5444,
abstract = {A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal.},
author = {Reiter, Johannes and Makohon-Moore, Alvin and Gerold, Jeffrey and Bozic, Ivana and Chatterjee, Krishnendu and Iacobuzio-Donahue, Christine and Vogelstein, Bert and Nowak, Martin},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{Reconstructing robust phylogenies of metastatic cancers}},
doi = {10.15479/AT:IST-2015-399-v1-1},
year = {2015},
}
@misc{5549,
abstract = {This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.},
author = {Fellner, Andreas},
keywords = {Markov Decision Process, Decision Tree, Probabilistic Verification, Counterexample Explanation},
publisher = {IST Austria},
title = {{Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes}},
doi = {10.15479/AT:ISTA:28},
year = {2015},
}
@inproceedings{1603,
abstract = {For deterministic systems, a counterexample to a property can simply be an error trace, whereas counterexamples in probabilistic systems are necessarily more complex. For instance, a set of erroneous traces with a sufficient cumulative probability mass can be used. Since these are too large objects to understand and manipulate, compact representations such as subchains have been considered. In the case of probabilistic systems with non-determinism, the situation is even more complex. While a subchain for a given strategy (or scheduler, resolving non-determinism) is a straightforward choice, we take a different approach. Instead, we focus on the strategy itself, and extract the most important decisions it makes, and present its succinct representation.
The key tools we employ to achieve this are (1) introducing a concept of importance of a state w.r.t. the strategy, and (2) learning using decision trees. There are three main consequent advantages of our approach. Firstly, it exploits the quantitative information on states, stressing the more important decisions. Secondly, it leads to a greater variability and degree of freedom in representing the strategies. Thirdly, the representation uses a self-explanatory data structure. In summary, our approach produces more succinct and more explainable strategies, as opposed to e.g. binary decision diagrams. Finally, our experimental results show that we can extract several rules describing the strategy even for very large systems that do not fit in memory, and based on the rules explain the erroneous behaviour.},
author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Chmelik, Martin and Fellner, Andreas and Kretinsky, Jan},
location = {San Francisco, CA, United States},
pages = {158 -- 177},
publisher = {Springer},
title = {{Counterexample explanation by learning small strategies in Markov decision processes}},
doi = {10.1007/978-3-319-21690-4_10},
volume = {9206},
year = {2015},
}
@article{5749,
abstract = {Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.},
author = {Wielgoss, Sébastien and Bergmiller, Tobias and Bischofberger, Anna M. and Hall, Alex R.},
issn = {0737-4038},
journal = {Molecular Biology and Evolution},
number = {3},
pages = {770--782},
publisher = {Oxford University Press (OUP)},
title = {{Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria}},
doi = {10.1093/molbev/msv270},
volume = {33},
year = {2015},
}
@article{5804,
abstract = {We present here the first integer-based algorithm for constructing a well-defined lattice sphere specified by integer radius and integer center. The algorithm evolves from a unique correspondence between the lattice points comprising the sphere and the distribution of sum of three square numbers in integer intervals. We characterize these intervals to derive a useful set of recurrences, which, in turn, aids in efficient computation. Each point of the lattice sphere is determined by resorting to only a few primitive operations in the integer domain. The symmetry of its quadraginta octants provides an added advantage by confining the computation to its prima quadraginta octant. Detailed theoretical analysis and experimental results have been furnished to demonstrate its simplicity and elegance.},
author = {Biswas, Ranita and Bhowmick, Partha},
issn = {0304-3975},
journal = {Theoretical Computer Science},
number = {4},
pages = {56--72},
publisher = {Elsevier},
title = {{From prima quadraginta octant to lattice sphere through primitive integer operations}},
doi = {10.1016/j.tcs.2015.11.018},
volume = {624},
year = {2015},
}