@misc{9885, abstract = {Data obtained from the fine-grained simulations used in Figures 2-5, data obtained from the coarse-grained numerical calculations used in Figure 6, and a sample script for the fine-grained simulation as a Jupyter notebook (ZIP)}, author = {Ucar, Mehmet C and Lipowsky, Reinhard}, publisher = {American Chemical Society }, title = {{MURL_Dataz}}, doi = {10.1021/acs.nanolett.9b04445.s002}, year = {2020}, } @article{7218, abstract = {The combined resection of skull-infiltrating tumours and immediate cranioplastic reconstruction predominantly relies on freehand-moulded solutions. Techniques that enable this procedure to be performed easily in routine clinical practice would be useful. A cadaveric study was developed in which a new software tool was used to perform single-stage reconstructions with prefabricated implants after the resection of skull-infiltrating pathologies. A novel 3D visualization and interaction framework was developed to create 10 virtual craniotomies in five cadaveric specimens. Polyether ether ketone (PEEK) implants were manufactured according to the bone defects. The image-guided craniotomy was reconstructed with PEEK and compared to polymethyl methacrylate (PMMA). Navigational accuracy and surgical precision were assessed. The PEEK workflow resulted in up to 10-fold shorter reconstruction times than the standard technique. Surgical precision was reflected by the mean 1.1 ± 0.29 mm distance between the virtual and real craniotomy, with submillimetre precision in 50%. Assessment of the global offset between virtual and actual craniotomy revealed an average shift of 4.5 ± 3.6 mm. The results validated the ‘elective single-stage cranioplasty’ technique as a state-of-the-art virtual planning method and surgical workflow. This patient-tailored workflow could significantly reduce surgical times compared to the traditional, intraoperative acrylic moulding method and may be an option for the reconstruction of bone defects in the craniofacial region.}, author = {Dodier, Philippe and Winter, Fabian and Auzinger, Thomas and Mistelbauer, Gabriel and Frischer, Josa M. and Wang, Wei Te and Mallouhi, Ammar and Marik, Wolfgang and Wolfsberger, Stefan and Reissig, Lukas and Hammadi, Firas and Matula, Christian and Baumann, Arnulf and Bavinzski, Gerhard}, issn = {1399-0020}, journal = {International Journal of Oral and Maxillofacial Surgery}, number = {8}, pages = {P1007--1015}, publisher = {Elsevier}, title = {{Single-stage bone resection and cranioplastic reconstruction: Comparison of a novel software-derived PEEK workflow with the standard reconstructive method}}, doi = {10.1016/j.ijom.2019.11.011}, volume = {49}, year = {2020}, } @article{7219, abstract = {Root system architecture (RSA), governed by the phytohormone auxin, endows plants with an adaptive advantage in particular environments. Using geographically representative arabidopsis (Arabidopsis thaliana) accessions as a resource for GWA mapping, Waidmann et al. and Ogura et al. recently identified two novel components involved in modulating auxin-mediated RSA and conferring plant fitness in particular habitats.}, author = {Xiao, Guanghui and Zhang, Yuzhou}, issn = {13601385}, journal = {Trends in Plant Science}, number = {2}, pages = {P121--123}, publisher = {Elsevier}, title = {{Adaptive growth: Shaping auxin-mediated root system architecture}}, doi = {10.1016/j.tplants.2019.12.001}, volume = {25}, year = {2020}, } @article{7234, abstract = {T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.}, author = {Obeidy, Peyman and Ju, Lining A. and Oehlers, Stefan H. and Zulkhernain, Nursafwana S. and Lee, Quintin and Galeano Niño, Jorge L. and Kwan, Rain Y.Q. and Tikoo, Shweta and Cavanagh, Lois L. and Mrass, Paulus and Cook, Adam J.L. and Jackson, Shaun P. and Biro, Maté and Roediger, Ben and Sixt, Michael K and Weninger, Wolfgang}, issn = {14401711}, journal = {Immunology and Cell Biology}, number = {2}, pages = {93--113}, publisher = {Wiley}, title = {{Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes}}, doi = {10.1111/imcb.12304}, volume = {98}, year = {2020}, } @article{7253, abstract = {The cyclin-dependent kinase inhibitor p57KIP2 is encoded by the imprinted Cdkn1c locus, exhibits maternal expression, and is essential for cerebral cortex development. How Cdkn1c regulates corticogenesis is however not clear. To this end we employ Mosaic Analysis with Double Markers (MADM) technology to genetically dissect Cdkn1c gene function in corticogenesis at single cell resolution. We find that the previously described growth-inhibitory Cdkn1c function is a non-cell-autonomous one, acting on the whole organism. In contrast we reveal a growth-promoting cell-autonomous Cdkn1c function which at the mechanistic level mediates radial glial progenitor cell and nascent projection neuron survival. Strikingly, the growth-promoting function of Cdkn1c is highly dosage sensitive but not subject to genomic imprinting. Collectively, our results suggest that the Cdkn1c locus regulates cortical development through distinct cell-autonomous and non-cell-autonomous mechanisms. More generally, our study highlights the importance to probe the relative contributions of cell intrinsic gene function and tissue-wide mechanisms to the overall phenotype.}, author = {Laukoter, Susanne and Beattie, Robert J and Pauler, Florian and Amberg, Nicole and Nakayama, Keiichi I. and Hippenmeyer, Simon}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development}}, doi = {10.1038/s41467-019-14077-2}, volume = {11}, year = {2020}, } @article{7339, abstract = {Cytoskeletal filaments such as microtubules (MTs) and filamentous actin (F-actin) dynamically support cell structure and functions. In central presynaptic terminals, F-actin is expressed along the release edge and reportedly plays diverse functional roles, but whether axonal MTs extend deep into terminals and play any physiological role remains controversial. At the calyx of Held in rats of either sex, confocal and high-resolution microscopy revealed that MTs enter deep into presynaptic terminal swellings and partially colocalize with a subset of synaptic vesicles (SVs). Electrophysiological analysis demonstrated that depolymerization of MTs specifically prolonged the slow-recovery time component of EPSCs from short-term depression induced by a train of high-frequency stimulation, whereas depolymerization of F-actin specifically prolonged the fast-recovery component. In simultaneous presynaptic and postsynaptic action potential recordings, depolymerization of MTs or F-actin significantly impaired the fidelity of high-frequency neurotransmission. We conclude that MTs and F-actin differentially contribute to slow and fast SV replenishment, thereby maintaining high-frequency neurotransmission.}, author = {Piriya Ananda Babu, Lashmi and Wang, Han Ying and Eguchi, Kohgaku and Guillaud, Laurent and Takahashi, Tomoyuki}, issn = {15292401}, journal = {Journal of neuroscience}, number = {1}, pages = {131--142}, publisher = {Society for Neuroscience}, title = {{Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission}}, doi = {10.1523/JNEUROSCI.1571-19.2019}, volume = {40}, year = {2020}, } @article{7350, abstract = {The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.}, author = {Nibau, Candida and Gallemi, Marçal and Dadarou, Despoina and Doonan, John H. and Cavallari, Nicola}, issn = {1664-462X}, journal = {Frontiers in Plant Science}, publisher = {Frontiers Media}, title = {{Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2}}, doi = {10.3389/fpls.2019.01680}, volume = {10}, year = {2020}, } @article{7369, abstract = {Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric – which we call multiscale relevance (MSR) – to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate.}, author = {Cubero, Ryan J and Marsili, Matteo and Roudi, Yasser}, issn = {1573-6873}, journal = {Journal of Computational Neuroscience}, keywords = {Time series analysis, Multiple time scale analysis, Spike train data, Information theory, Bayesian decoding}, pages = {85--102}, publisher = {Springer Nature}, title = {{Multiscale relevance and informative encoding in neuronal spike trains}}, doi = {10.1007/s10827-020-00740-x}, volume = {48}, year = {2020}, } @article{7364, abstract = {We present nsCouette, a highly scalable software tool to solve the Navier–Stokes equations for incompressible fluid flow between differentially heated and independently rotating, concentric cylinders. It is based on a pseudospectral spatial discretization and dynamic time-stepping. It is implemented in modern Fortran with a hybrid MPI-OpenMP parallelization scheme and thus designed to compute turbulent flows at high Reynolds and Rayleigh numbers. An additional GPU implementation (C-CUDA) for intermediate problem sizes and a version for pipe flow (nsPipe) are also provided.}, author = {Lopez Alonso, Jose M and Feldmann, Daniel and Rampp, Markus and Vela-Martín, Alberto and Shi, Liang and Avila, Marc}, issn = {23527110}, journal = {SoftwareX}, publisher = {Elsevier}, title = {{nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow}}, doi = {10.1016/j.softx.2019.100395}, volume = {11}, year = {2020}, } @article{7431, abstract = {In many real-world systems, information can be transmitted in two qualitatively different ways: by copying or by transformation. Copying occurs when messages are transmitted without modification, e.g. when an offspring receives an unaltered copy of a gene from its parent. Transformation occurs when messages are modified systematically during transmission, e.g. when mutational biases occur during genetic replication. Standard information-theoretic measures do not distinguish these two modes of information transfer, although they may reflect different mechanisms and have different functional consequences. Starting from a few simple axioms, we derive a decomposition of mutual information into the information transmitted by copying versus the information transmitted by transformation. We begin with a decomposition that applies when the source and destination of the channel have the same set of messages and a notion of message identity exists. We then generalize our decomposition to other kinds of channels, which can involve different source and destination sets and broader notions of similarity. In addition, we show that copy information can be interpreted as the minimal work needed by a physical copying process, which is relevant for understanding the physics of replication. We use the proposed decomposition to explore a model of amino acid substitution rates. Our results apply to any system in which the fidelity of copying, rather than simple predictability, is of critical relevance.}, author = {Kolchinsky, Artemy and Corominas-Murtra, Bernat}, issn = {17425662}, journal = {Journal of the Royal Society Interface}, number = {162}, publisher = {The Royal Society}, title = {{Decomposing information into copying versus transformation}}, doi = {10.1098/rsif.2019.0623}, volume = {17}, year = {2020}, }