@article{9828, abstract = {Amplitude demodulation is a classical operation used in signal processing. For a long time, its effective applications in practice have been limited to narrowband signals. In this work, we generalize amplitude demodulation to wideband signals. We pose demodulation as a recovery problem of an oversampled corrupted signal and introduce special iterative schemes belonging to the family of alternating projection algorithms to solve it. Sensibly chosen structural assumptions on the demodulation outputs allow us to reveal the high inferential accuracy of the method over a rich set of relevant signals. This new approach surpasses current state-of-the-art demodulation techniques apt to wideband signals in computational efficiency by up to many orders of magnitude with no sacrifice in quality. Such performance opens the door for applications of the amplitude demodulation procedure in new contexts. In particular, the new method makes online and large-scale offline data processing feasible, including the calculation of modulator-carrier pairs in higher dimensions and poor sampling conditions, independent of the signal bandwidth. We illustrate the utility and specifics of applications of the new method in practice by using natural speech and synthetic signals.}, author = {Gabrielaitis, Mantas}, issn = {1941-0476}, journal = {IEEE Transactions on Signal Processing}, pages = {4039 -- 4054}, publisher = {Institute of Electrical and Electronics Engineers}, title = {{Fast and accurate amplitude demodulation of wideband signals}}, doi = {10.1109/TSP.2021.3087899}, volume = {69}, year = {2021}, } @misc{9327, abstract = {This archive contains the missing sweater mesh animations and displacement models for the code of "Mechanics-Aware Deformation of Yarn Pattern Geometry" Code Repository: https://git.ist.ac.at/gsperl/MADYPG}, author = {Sperl, Georg and Narain, Rahul and Wojtan, Christopher J}, publisher = {IST Austria}, title = {{Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data)}}, doi = {10.15479/AT:ISTA:9327}, year = {2021}, } @article{9770, abstract = {We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.}, author = {Volosniev, Artem and Alpern, Hen and Paltiel, Yossi and Millo, Oded and Lemeshko, Mikhail and Ghazaryan, Areg}, issn = {2469-9969}, journal = {Physical Review B}, number = {2}, publisher = {American Physical Society}, title = {{Interplay between friction and spin-orbit coupling as a source of spin polarization}}, doi = {10.1103/physrevb.104.024430}, volume = {104}, year = {2021}, } @article{9827, abstract = {The Nearest neighbour search (NNS) is a fundamental problem in many application domains dealing with multidimensional data. In a concurrent setting, where dynamic modifications are allowed, a linearizable implementation of the NNS is highly desirable.This paper introduces the LockFree-kD-tree (LFkD-tree ): a lock-free concurrent kD-tree, which implements an abstract data type (ADT) that provides the operations Add, Remove, Contains, and NNS. Our implementation is linearizable. The operations in the LFkD-tree use single-word read and compare-and-swap (Image 1 ) atomic primitives, which are readily supported on available multi-core processors. We experimentally evaluate the LFkD-tree using several benchmarks comprising real-world and synthetic datasets. The experiments show that the presented design is scalable and achieves significant speed-up compared to the implementations of an existing sequential kD-tree and a recently proposed multidimensional indexing structure, PH-tree.}, author = {Chatterjee, Bapi and Walulya, Ivan and Tsigas, Philippas}, issn = {0304-3975}, journal = {Theoretical Computer Science}, keywords = {Concurrent data structure, kD-tree, Nearest neighbor search, Similarity search, Lock-free, Linearizability}, pages = {27--48}, publisher = {Elsevier}, title = {{Concurrent linearizable nearest neighbour search in LockFree-kD-tree}}, doi = {10.1016/j.tcs.2021.06.041}, volume = {886}, year = {2021}, } @article{9877, abstract = {Parent-of-origin–dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin–specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA–producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions—the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.}, author = {Rodrigues, Jessica A. and Hsieh, Ping-Hung and Ruan, Deling and Nishimura, Toshiro and Sharma, Manoj K. and Sharma, Rita and Ye, XinYi and Nguyen, Nicholas D. and Nijjar, Sukhranjan and Ronald, Pamela C. and Fischer, Robert L. and Zilberman, Daniel}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {29}, publisher = {National Academy of Sciences}, title = {{Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting}}, doi = {10.1073/pnas.2104445118}, volume = {118}, year = {2021}, } @article{9874, abstract = {Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.}, author = {Raso, Andrea and Dirkx, Ellen and Sampaio-Pinto, Vasco and el Azzouzi, Hamid and Cubero, Ryan J and Sorensen, Daniel W. and Ottaviani, Lara and Olieslagers, Servé and Huibers, Manon M. and de Weger, Roel and Siddiqi, Sailay and Moimas, Silvia and Torrini, Consuelo and Zentillin, Lorena and Braga, Luca and Nascimento, Diana S. and da Costa Martins, Paula A. and van Berlo, Jop H. and Zacchigna, Serena and Giacca, Mauro and De Windt, Leon J.}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration}}, doi = {10.1038/s41467-021-25211-4}, volume = {12}, year = {2021}, } @article{9769, abstract = {A few years ago, flow equations were introduced as a technique for calculating the ground-state energies of cold Bose gases with and without impurities. In this paper, we extend this approach to compute observables other than the energy. As an example, we calculate the densities, and phase fluctuations of one-dimensional Bose gases with one and two impurities. For a single mobile impurity, we use flow equations to validate the mean-field results obtained upon the Lee-Low-Pines transformation. We show that the mean-field approximation is accurate for all values of the boson-impurity interaction strength as long as the phase coherence length is much larger than the healing length of the condensate. For two static impurities, we calculate impurity-impurity interactions induced by the Bose gas. We find that leading order perturbation theory fails when boson-impurity interactions are stronger than boson-boson interactions. The mean-field approximation reproduces the flow equation results for all values of the boson-impurity interaction strength as long as boson-boson interactions are weak.}, author = {Brauneis, Fabian and Hammer, Hans-Werner and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, number = {1}, publisher = {SciPost}, title = {{Impurities in a one-dimensional Bose gas: The flow equation approach}}, doi = {10.21468/scipostphys.11.1.008}, volume = {11}, year = {2021}, } @article{9746, abstract = {Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous, as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs.}, author = {Batra, Aditi and Römhild, Roderich and Rousseau, Emilie and Franzenburg, Sören and Niemann, Stefan and Schulenburg, Hinrich}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{High potency of sequential therapy with only beta-lactam antibiotics}}, doi = {10.7554/elife.68876}, volume = {10}, year = {2021}, } @article{9911, abstract = {A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.}, author = {Nelson, Glyn and Boehm, Ulrike and Bagley, Steve and Bajcsy, Peter and Bischof, Johanna and Brown, Claire M. and Dauphin, Aurélien and Dobbie, Ian M. and Eriksson, John E. and Faklaris, Orestis and Fernandez-Rodriguez, Julia and Ferrand, Alexia and Gelman, Laurent and Gheisari, Ali and Hartmann, Hella and Kukat, Christian and Laude, Alex and Mitkovski, Miso and Munck, Sebastian and North, Alison J. and Rasse, Tobias M. and Resch-Genger, Ute and Schuetz, Lucas C. and Seitz, Arne and Strambio-De-Castillia, Caterina and Swedlow, Jason R. and Alexopoulos, Ioannis and Aumayr, Karin and Avilov, Sergiy and Bakker, Gert Jan and Bammann, Rodrigo R. and Bassi, Andrea and Beckert, Hannes and Beer, Sebastian and Belyaev, Yury and Bierwagen, Jakob and Birngruber, Konstantin A. and Bosch, Manel and Breitlow, Juergen and Cameron, Lisa A. and Chalfoun, Joe and Chambers, James J. and Chen, Chieh Li and Conde-Sousa, Eduardo and Corbett, Alexander D. and Cordelieres, Fabrice P. and Nery, Elaine Del and Dietzel, Ralf and Eismann, Frank and Fazeli, Elnaz and Felscher, Andreas and Fried, Hans and Gaudreault, Nathalie and Goh, Wah Ing and Guilbert, Thomas and Hadleigh, Roland and Hemmerich, Peter and Holst, Gerhard A. and Itano, Michelle S. and Jaffe, Claudia B. and Jambor, Helena K. and Jarvis, Stuart C. and Keppler, Antje and Kirchenbuechler, David and Kirchner, Marcel and Kobayashi, Norio and Krens, Gabriel and Kunis, Susanne and Lacoste, Judith and Marcello, Marco and Martins, Gabriel G. and Metcalf, Daniel J. and Mitchell, Claire A. and Moore, Joshua and Mueller, Tobias and Nelson, Michael S. and Ogg, Stephen and Onami, Shuichi and Palmer, Alexandra L. and Paul-Gilloteaux, Perrine and Pimentel, Jaime A. and Plantard, Laure and Podder, Santosh and Rexhepaj, Elton and Royon, Arnaud and Saari, Markku A. and Schapman, Damien and Schoonderwoert, Vincent and Schroth-Diez, Britta and Schwartz, Stanley and Shaw, Michael and Spitaler, Martin and Stoeckl, Martin T. and Sudar, Damir and Teillon, Jeremie and Terjung, Stefan and Thuenauer, Roland and Wilms, Christian D. and Wright, Graham D. and Nitschke, Roland}, issn = {1365-2818}, journal = {Journal of Microscopy}, number = {1}, pages = {56--73}, publisher = {Wiley}, title = {{QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy}}, doi = {10.1111/jmi.13041}, volume = {284}, year = {2021}, } @article{9906, abstract = {Endometriosis is a common gynecological disorder characterized by ectopic growth of endometrium outside the uterus and is associated with chronic pain and infertility. We investigated the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA that has been implicated in several types of cancer. We found that LINC01133 is upregulated in ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed genes indicated that cell proliferation and migration pathways were affected in line with the observed phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein level, which together with the quantification of the DNA content using fluorescence-activated cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin, which could explain changes in the cytoskeleton and cellular migration. These results indicate that endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the cellular proliferation and migration pathways.}, author = {Yotova, Iveta and Hudson, Quanah J. and Pauler, Florian and Proestling, Katharina and Haslinger, Isabella and Kuessel, Lorenz and Perricos, Alexandra and Husslein, Heinrich and Wenzl, René}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {16}, publisher = {MDPI}, title = {{LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line}}, doi = {10.3390/ijms22168385}, volume = {22}, year = {2021}, }