@article{10336, abstract = {Biological membranes can dramatically accelerate the aggregation of normally soluble protein molecules into amyloid fibrils and alter the fibril morphologies, yet the molecular mechanisms through which this accelerated nucleation takes place are not yet understood. Here, we develop a coarse-grained model to systematically explore the effect that the structural properties of the lipid membrane and the nature of protein–membrane interactions have on the nucleation rates of amyloid fibrils. We identify two physically distinct nucleation pathways—protein-rich and lipid-rich—and quantify how the membrane fluidity and protein–membrane affinity control the relative importance of those molecular pathways. We find that the membrane’s susceptibility to reshaping and being incorporated into the fibrillar aggregates is a key determinant of its ability to promote protein aggregation. We then characterize the rates and the free-energy profile associated with this heterogeneous nucleation process, in which the surface itself participates in the aggregate structure. Finally, we compare quantitatively our data to experiments on membrane-catalyzed amyloid aggregation of α-synuclein, a protein implicated in Parkinson’s disease that predominately nucleates on membranes. More generally, our results provide a framework for understanding macromolecular aggregation on lipid membranes in a broad biological and biotechnological context.}, author = {Krausser, Johannes and Knowles, Tuomas P. J. and Šarić, Anđela}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {52}, pages = {33090--33098}, publisher = {National Academy of Sciences}, title = {{Physical mechanisms of amyloid nucleation on fluid membranes}}, doi = {10.1073/pnas.2007694117}, volume = {117}, year = {2020}, } @article{10342, abstract = {The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor–related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.}, author = {Tian, Xiaohe and Leite, Diana M. and Scarpa, Edoardo and Nyberg, Sophie and Fullstone, Gavin and Forth, Joe and Matias, Diana and Apriceno, Azzurra and Poma, Alessandro and Duro-Castano, Aroa and Vuyyuru, Manish and Harker-Kirschneck, Lena and Šarić, Anđela and Zhang, Zhongping and Xiang, Pan and Fang, Bin and Tian, Yupeng and Luo, Lei and Rizzello, Loris and Battaglia, Giuseppe}, issn = {2375-2548}, journal = {Science Advances}, keywords = {multidisciplinary}, number = {48}, publisher = {American Association for the Advancement of Science}, title = {{On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias}}, doi = {10.1126/sciadv.abc4397}, volume = {6}, year = {2020}, } @article{10344, abstract = {In this study, we investigate the role of the surface patterning of nanostructures for cell membrane reshaping. To accomplish this, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations and explore the solution space of ligand patterns on a nanoparticle that promote efficient and reliable cell uptake. Surprisingly, we find that in the regime of low ligand number the best-performing structures are characterized by ligands arranged into long one-dimensional chains that pattern the surface of the particle. We show that these chains of ligands provide particles with high rotational freedom and they lower the free energy barrier for membrane crossing. Our approach reveals a set of nonintuitive design rules that can be used to inform artificial nanoparticle construction and the search for inhibitors of viral entry.}, author = {Forster, Joel C. and Krausser, Johannes and Vuyyuru, Manish R. and Baum, Buzz and Šarić, Anđela}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {22}, publisher = {American Physical Society}, title = {{Exploring the design rules for efficient membrane-reshaping nanostructures}}, doi = {10.1103/physrevlett.125.228101}, volume = {125}, year = {2020}, } @article{10341, abstract = {Tracing the motion of macromolecules, viruses, and nanoparticles adsorbed onto cell membranes is currently the most direct way of probing the complex dynamic interactions behind vital biological processes, including cell signalling, trafficking, and viral infection. The resulting trajectories are usually consistent with some type of anomalous diffusion, but the molecular origins behind the observed anomalous behaviour are usually not obvious. Here we use coarse-grained molecular dynamics simulations to help identify the physical mechanisms that can give rise to experimentally observed trajectories of nanoscopic objects moving on biological membranes. We find that diffusion on membranes of high fluidities typically results in normal diffusion of the adsorbed nanoparticle, irrespective of the concentration of receptors, receptor clustering, or multivalent interactions between the particle and membrane receptors. Gel-like membranes on the other hand result in anomalous diffusion of the particle, which becomes more pronounced at higher receptor concentrations. This anomalous diffusion is characterised by local particle trapping in the regions of high receptor concentrations and fast hopping between such regions. The normal diffusion is recovered in the limit where the gel membrane is saturated with receptors. We conclude that hindered receptor diffusivity can be a common reason behind the observed anomalous diffusion of viruses, vesicles, and nanoparticles adsorbed on cell and model membranes. Our results enable direct comparison with experiments and offer a new route for interpreting motility experiments on cell membranes.}, author = {Debets, V. E. and Janssen, L. M. C. and Šarić, Anđela}, issn = {1744-683X}, journal = {Soft Matter}, keywords = {condensed matter physics, general chemistry}, number = {47}, pages = {10628--10639}, publisher = {Royal Society of Chemistry}, title = {{Characterising the diffusion of biological nanoparticles on fluid and cross-linked membranes}}, doi = {10.1039/d0sm00712a}, volume = {16}, year = {2020}, } @article{10346, abstract = {One of the most robust examples of self-assembly in living organisms is the formation of collagen architectures. Collagen type I molecules are a crucial component of the extracellular matrix, where they self-assemble into fibrils of well-defined axial striped patterns. This striped fibrillar pattern is preserved across the animal kingdom and is important for the determination of cell phenotype, cell adhesion, and tissue regulation and signaling. The understanding of the physical processes that determine such a robust morphology of self-assembled collagen fibrils is currently almost completely missing. Here, we develop a minimal coarse-grained computational model to identify the physical principles of the assembly of collagen-mimetic molecules. We find that screened electrostatic interactions can drive the formation of collagen-like filaments of well-defined striped morphologies. The fibril axial pattern is determined solely by the distribution of charges on the molecule and is robust to the changes in protein concentration, monomer rigidity, and environmental conditions. We show that the striped fibrillar pattern cannot be easily predicted from the interactions between two monomers but is an emergent result of multibody interactions. Our results can help address collagen remodeling in diseases and aging and guide the design of collagen scaffolds for biotechnological applications.}, author = {Hafner, Anne E. and Gyori, Noemi G. and Bench, Ciaran A. and Davis, Luke K. and Šarić, Anđela}, issn = {0006-3495}, journal = {Biophysical Journal}, keywords = {biophysics}, number = {9}, pages = {1791--1799}, publisher = {Cell Press}, title = {{Modeling fibrillogenesis of collagen-mimetic molecules}}, doi = {10.1016/j.bpj.2020.09.013}, volume = {119}, year = {2020}, } @article{10350, abstract = {The misfolding and aberrant aggregation of proteins into fibrillar structures is a key factor in some of the most prevalent human diseases, including diabetes and dementia. Low molecular weight oligomers are thought to be a central factor in the pathology of these diseases, as well as critical intermediates in the fibril formation process, and as such have received much recent attention. Moreover, on-pathway oligomeric intermediates are potential targets for therapeutic strategies aimed at interrupting the fibril formation process. However, a consistent framework for distinguishing on-pathway from off-pathway oligomers has hitherto been lacking and, in particular, no consensus definition of on- and off-pathway oligomers is available. In this paper, we argue that a non-binary definition of oligomers' contribution to fibril-forming pathways may be more informative and we suggest a quantitative framework, in which each oligomeric species is assigned a value between 0 and 1 describing its relative contribution to the formation of fibrils. First, we clarify the distinction between oligomers and fibrils, and then we use the formalism of reaction networks to develop a general definition for on-pathway oligomers, that yields meaningful classifications in the context of amyloid formation. By applying these concepts to Monte Carlo simulations of a minimal aggregating system, and by revisiting several previous studies of amyloid oligomers in light of our new framework, we demonstrate how to perform these classifications in practice. For each oligomeric species we obtain the degree to which it is on-pathway, highlighting the most effective pharmaceutical targets for the inhibition of amyloid fibril formation.}, author = {Dear, Alexander J. and Meisl, Georg and Šarić, Anđela and Michaels, Thomas C. T. and Kjaergaard, Magnus and Linse, Sara and Knowles, Tuomas P. J.}, issn = {2041-6539}, journal = {Chemical Science}, keywords = {general chemistry}, number = {24}, pages = {6236--6247}, publisher = {Royal Society of Chemistry}, title = {{Identification of on- and off-pathway oligomers in amyloid fibril formation}}, doi = {10.1039/c9sc06501f}, volume = {11}, year = {2020}, } @article{10349, abstract = {Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III–mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.}, author = {Tarrason Risa, Gabriel and Hurtig, Fredrik and Bray, Sian and Hafner, Anne E. and Harker-Kirschneck, Lena and Faull, Peter and Davis, Colin and Papatziamou, Dimitra and Mutavchiev, Delyan R. and Fan, Catherine and Meneguello, Leticia and Arashiro Pulschen, Andre and Dey, Gautam and Culley, Siân and Kilkenny, Mairi and Souza, Diorge P. and Pellegrini, Luca and de Bruin, Robertus A. M. and Henriques, Ricardo and Snijders, Ambrosius P. and Šarić, Anđela and Lindås, Ann-Christin and Robinson, Nicholas P. and Baum, Buzz}, issn = {1095-9203}, journal = {Science}, keywords = {multidisciplinary}, number = {6504}, publisher = {American Association for the Advancement of Science}, title = {{The proteasome controls ESCRT-III–mediated cell division in an archaeon}}, doi = {10.1126/science.aaz2532}, volume = {369}, year = {2020}, } @article{10347, abstract = {Understanding the mechanism of action of compounds capable of inhibiting amyloid-fibril formation is critical to the development of potential therapeutics against protein-misfolding diseases. A fundamental challenge for progress is the range of possible target species and the disparate timescales involved, since the aggregating proteins are simultaneously the reactants, products, intermediates, and catalysts of the reaction. It is a complex problem, therefore, to choose the states of the aggregating proteins that should be bound by the compounds to achieve the most potent inhibition. We present here a comprehensive kinetic theory of amyloid-aggregation inhibition that reveals the fundamental thermodynamic and kinetic signatures characterizing effective inhibitors by identifying quantitative relationships between the aggregation and binding rate constants. These results provide general physical laws to guide the design and optimization of inhibitors of amyloid-fibril formation, revealing in particular the important role of on-rates in the binding of the inhibitors.}, author = {Michaels, Thomas C. T. and Šarić, Anđela and Meisl, Georg and Heller, Gabriella T. and Curk, Samo and Arosio, Paolo and Linse, Sara and Dobson, Christopher M. and Vendruscolo, Michele and Knowles, Tuomas P. J.}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, keywords = {multidisciplinary}, number = {39}, pages = {24251--24257}, publisher = {National Academy of Sciences}, title = {{Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors}}, doi = {10.1073/pnas.2006684117}, volume = {117}, year = {2020}, } @article{10351, abstract = {Oligomeric species populated during the aggregation of the Aβ42 peptide have been identified as potent cytotoxins linked to Alzheimer’s disease, but the fundamental molecular pathways that control their dynamics have yet to be elucidated. By developing a general approach that combines theory, experiment and simulation, we reveal, in molecular detail, the mechanisms of Aβ42 oligomer dynamics during amyloid fibril formation. Even though all mature amyloid fibrils must originate as oligomers, we found that most Aβ42 oligomers dissociate into their monomeric precursors without forming new fibrils. Only a minority of oligomers converts into fibrillar structures. Moreover, the heterogeneous ensemble of oligomeric species interconverts on timescales comparable to those of aggregation. Our results identify fundamentally new steps that could be targeted by therapeutic interventions designed to combat protein misfolding diseases.}, author = {Michaels, Thomas C. T. and Šarić, Anđela and Curk, Samo and Bernfur, Katja and Arosio, Paolo and Meisl, Georg and Dear, Alexander J. and Cohen, Samuel I. A. and Dobson, Christopher M. and Vendruscolo, Michele and Linse, Sara and Knowles, Tuomas P. J.}, issn = {1755-4349}, journal = {Nature Chemistry}, keywords = {general chemical engineering, general chemistry}, number = {5}, pages = {445--451}, publisher = {Springer Nature}, title = {{Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide}}, doi = {10.1038/s41557-020-0452-1}, volume = {12}, year = {2020}, } @article{10348, abstract = {The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.}, author = {Pfitzner, Anna-Katharina and Mercier, Vincent and Jiang, Xiuyun and Moser von Filseck, Joachim and Baum, Buzz and Šarić, Anđela and Roux, Aurélien}, issn = {0092-8674}, journal = {Cell}, keywords = {general biochemistry, genetics and molecular biology}, number = {5}, pages = {1140--1155.e18}, publisher = {Elsevier}, title = {{An ESCRT-III polymerization sequence drives membrane deformation and fission}}, doi = {10.1016/j.cell.2020.07.021}, volume = {182}, year = {2020}, } @article{10352, abstract = {In the nuclear pore complex, intrinsically disordered nuclear pore proteins (FG Nups) form a selective barrier for transport into and out of the cell nucleus, in a way that remains poorly understood. The collective FG Nup behavior has long been conceptualized either as a polymer brush, dominated by entropic and excluded-volume (repulsive) interactions, or as a hydrogel, dominated by cohesive (attractive) interactions between FG Nups. Here we compare mesoscale computational simulations with a wide range of experimental data to demonstrate that FG Nups are at the crossover point between these two regimes. Specifically, we find that repulsive and attractive interactions are balanced, resulting in morphologies and dynamics that are close to those of ideal polymer chains. We demonstrate that this property of FG Nups yields sufficient cohesion to seal the transport barrier, and yet maintains fast dynamics at the molecular scale, permitting the rapid polymer rearrangements needed for transport events.}, author = {Davis, Luke K. and Ford, Ian J. and Šarić, Anđela and Hoogenboom, Bart W.}, issn = {2470-0053}, journal = {Physical Review E}, number = {2}, publisher = {American Physical Society}, title = {{Intrinsically disordered nuclear pore proteins show ideal-polymer morphologies and dynamics}}, doi = {10.1103/physreve.101.022420}, volume = {101}, year = {2020}, } @article{10353, abstract = {Experiments have suggested that bacterial mechanosensitive channels separate into 2D clusters, the role of which is unclear. By developing a coarse-grained computer model we find that clustering promotes the channel closure, which is highly dependent on the channel concentration and membrane stress. This behaviour yields a tightly regulated gating system, whereby at high tensions channels gate individually, and at lower tensions the channels spontaneously aggregate and inactivate. We implement this positive feedback into the model for cell volume regulation, and find that the channel clustering protects the cell against excessive loss of cytoplasmic content.}, author = {Paraschiv, Alexandru and Hegde, Smitha and Ganti, Raman and Pilizota, Teuta and Šarić, Anđela}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {general physics and astronomy}, number = {4}, publisher = {American Physical Society}, title = {{Dynamic clustering regulates activity of mechanosensitive membrane channels}}, doi = {10.1103/physrevlett.124.048102}, volume = {124}, year = {2020}, } @misc{10557, abstract = {Data storage and retrieval systems, methods, and computer-readable media utilize a cryptographically verifiable data structure that facilitates verification of a transaction in a decentralized peer-to-peer environment using multi-hop backwards and forwards links. Backward links are cryptographic hashes of past records. Forward links are cryptographic signatures of future records that are added retroactively to records once the target block has been appended to the data structure.}, author = {Ford, Bryan and Gasse, Linus and Kokoris Kogias, Eleftherios and Jovanovic, Philipp}, title = {{Cryptographically verifiable data structure having multi-hop forward and backwards links and associated systems and methods}}, year = {2020}, } @article{10618, abstract = {Magnetism typically arises from the joint effect of Fermi statistics and repulsive Coulomb interactions, which favours ground states with non-zero electron spin. As a result, controlling spin magnetism with electric fields—a longstanding technological goal in spintronics and multiferroics1,2—can be achieved only indirectly. Here we experimentally demonstrate direct electric-field control of magnetic states in an orbital Chern insulator3,4,5,6, a magnetic system in which non-trivial band topology favours long-range order of orbital angular momentum but the spins are thought to remain disordered7,8,9,10,11,12,13,14. We use van der Waals heterostructures consisting of a graphene monolayer rotationally faulted with respect to a Bernal-stacked bilayer to realize narrow and topologically non-trivial valley-projected moiré minibands15,16,17. At fillings of one and three electrons per moiré unit cell within these bands, we observe quantized anomalous Hall effects18 with transverse resistance approximately equal to h/2e2 (where h is Planck’s constant and e is the charge on the electron), which is indicative of spontaneous polarization of the system into a single-valley-projected band with a Chern number equal to two. At a filling of three electrons per moiré unit cell, we find that the sign of the quantum anomalous Hall effect can be reversed via field-effect control of the chemical potential; moreover, this transition is hysteretic, which we use to demonstrate non-volatile electric-field-induced reversal of the magnetic state. A theoretical analysis19 indicates that the effect arises from the topological edge states, which drive a change in sign of the magnetization and thus a reversal in the favoured magnetic state. Voltage control of magnetic states can be used to electrically pattern non-volatile magnetic-domain structures hosting chiral edge states, with applications ranging from reconfigurable microwave circuit elements to ultralow-power magnetic memories.}, author = {Polshyn, Hryhoriy and Zhu, J. and Kumar, M. A. and Zhang, Y. and Yang, F. and Tschirhart, C. L. and Serlin, M. and Watanabe, K. and Taniguchi, T. and MacDonald, A. H. and Young, A. F.}, issn = {1476-4687}, journal = {Nature}, keywords = {multidisciplinary}, number = {7836}, pages = {66--70}, publisher = {Springer Nature}, title = {{Electrical switching of magnetic order in an orbital Chern insulator}}, doi = {10.1038/s41586-020-2963-8}, volume = {588}, year = {2020}, } @unpublished{10650, abstract = {The understanding of material systems with strong electron-electron interactions is the central problem in modern condensed matter physics. Despite this, the essential physics of many of these materials is still not understood and we have no overall perspective on their properties. Moreover, we have very little ability to make predictions in this class of systems. In this manuscript we share our personal views of what the major open problems are in correlated electron systems and we discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies.}, author = {Alexandradinata, A and Armitage, N.P. and Baydin, Andrey and Bi, Wenli and Cao, Yue and Changlani, Hitesh J. and Chertkov, Eli and da Silva Neto, Eduardo H. and Delacretaz, Luca and El Baggari, Ismail and Ferguson, G.M. and Gannon, William J. and Ghorashi, Sayed Ali Akbar and Goodge, Berit H. and Goulko, Olga and Grissonnache, G. and Hallas, Alannah and Hayes, Ian M. and He, Yu and Huang, Edwin W. and Kogar, Anshu and Kumah, Divine and Lee, Jong Yeon and Legros, A. and Mahmood, Fahad and Maximenko, Yulia and Pellatz, Nick and Polshyn, Hryhoriy and Sarkar, Tarapada and Scheie, Allen and Seyler, Kyle L. and Shi, Zhenzhong and Skinner, Brian and Steinke, Lucia and Thirunavukkuarasu, K. and Trevisan, Thaís Victa and Vogl, Michael and Volkov, Pavel A. and Wang, Yao and Wang, Yishu and Wei, Di and Wei, Kaya and Yang, Shuolong and Zhang, Xian and Zhang, Ya-Hui and Zhao, Liuyan and Zong, Alfred}, booktitle = {arXiv}, pages = {55}, title = {{The future of the correlated electron problem}}, year = {2020}, } @inproceedings{10673, abstract = {We propose a neural information processing system obtained by re-purposing the function of a biological neural circuit model to govern simulated and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs realize networks with higher maximum flow compared to arbitrary wired networks. We then learn instances of ONCs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases, significantly surpass the performance of contemporary deep learning models. ONC networks are compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are fully interpretable at the cell-level.}, author = {Hasani, Ramin and Lechner, Mathias and Amini, Alexander and Rus, Daniela and Grosu, Radu}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, issn = {2640-3498}, location = {Virtual}, pages = {4082--4093}, title = {{A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits}}, year = {2020}, } @inproceedings{10693, abstract = {High quality graphene heterostructures host an array of fractional quantum Hall isospin ferromagnets with diverse spin and valley orders. While a variety of phase transitions have been observed, disentangling the isospin phase diagram of these states is hampered by the absence of direct probes of spin and valley order. I will describe nonlocal transport measurements based on launching spin waves from a gate defined lateral heterojunction, performed in ultra-clean Corbino geometry graphene devices. At high magnetic fields, we find that the spin-wave transport signal is detected in all FQH states between ν = 0 and 1; however, between ν = 1 and 2 only odd numerator FQH states show finite nonlocal transport, despite the identical ground state spin polarizations in odd- and even numerator states. The results reveal that the neutral spin-waves are both spin and sublattice polarized making them a sensitive probe of ground state sublattice structure. Armed with this understanding, we use nonlocal transport signal to a magnetic field tuned isospin phase transition, showing that the emergent even denominator state at ν = 1/2 in monolayer graphene is indeed a multicomponent state featuring equal populations on each sublattice.}, author = {Zhou, Haoxin and Polshyn, Hryhoriy and Tanaguchi, Takashi and Watanabe, Kenji and Young, Andrea}, booktitle = {APS March Meeting 2020}, issn = {0003-0503}, location = {Denver, CO, United States}, number = {1}, publisher = {American Physical Society}, title = {{Sublattice resolved spin wave transport through graphene fractional quantum Hall states as a probe of isospin order}}, volume = {65}, year = {2020}, } @inproceedings{10698, abstract = {This is the second of three talks describing the observation and characterization of a ferromagnetic moiré heterostructure based on twisted bilayer graphene aligned to hexagonal boron nitride. I will compare the qualitative and quantitative features of this observed quantum anomalous Hall state to traditional systems engineered from thin film (Bi,Sb)2Te3 topological insulators. In particular, we find that the measured electronic energy gap of ~30K is several times higher than the Curie temperature, consistent with a lack of disorder associated with magnetic dopants. In this system, the quantization arises from spontaneous ferromagnetic polarization into a single spin and valley moiré subband, which is topological despite the lack of spin orbit coupling. I will also discuss the observation of current induced switching, which allows the magnetic state of the heterostructure to be controllably reversed with currents as small as a few nanoamperes.}, author = {Serlin, Marec and Tschirhart, Charles and Polshyn, Hryhoriy and Zhang, Yuxuan and Zhu, Jiacheng and Huber, Martin E. and Balents, Leon and Watanabe, Kenji and Tanaguchi, Takashi and Young, Andrea}, booktitle = {APS March Meeting 2020}, location = {Denver, CO, United States}, number = {1}, publisher = {American Physical Society}, title = {{Intrinsic quantized anomalous Hall effect in a moiré heterostructure, part II: Temperature dependence and current switching}}, volume = {65}, year = {2020}, } @inproceedings{10699, abstract = {This is the third of three talks describing the observation and characterization of a ferromagnetic moiré heterostructure based on twisted bilayer graphene aligned to hexagonal boron nitride. In this segment I will present scanning probe magnetometry data acquired using a nanoSQUID-on-tip microscope, which provides ~150 nm spatial resolution and a field sensitivity of ~10 nT/rtHz. We study the distribution of magnetic domains within the device as a function of density, magnetic field training, and DC current. Our data allow us to constrain the magnitude of the orbital magnetic moment of the electrons in the QAH state. Comparison with simultaneously acquired transport data allows us to precisely correlate single domain dynamics with discrete jumps in the observed anomalous Hall signal.}, author = {Tschirhart, Charles and Serlin, Marec and Polshyn, Hryhoriy and Zhang, Yuxuan and Zhu, Jiacheng and Balents, Leon and Huber, Martin E. and Watanabe, Kenji and Tanaguchi, Takashi and Young, Andrea}, booktitle = {APS March Meeting 2020}, issn = {0003-0503}, location = {Denver, CO, United States}, number = {1}, publisher = {American Physical Society}, title = {{Intrinsic quantized anomalous Hall effect in a moiré heterostructure, part III: Scanning probe magnetometry}}, volume = {65}, year = {2020}, } @inproceedings{10697, abstract = {We report the observation of a quantized anomalous Hall effect in a moiré heterostructure consisting of twisted bilayer graphene aligned to an encapsulating hBN substrate. The effect occurs at a density of 3 electrons per superlattice unit cell, where we observe magnetic hysteresis and a Hall resistance quantized to within 0.1% of the resistance quantum at temperatures as high as 3K. In this first of 3 talks, I will describe the fabrication procedure for our device as well as basic transport characterization measurements. I will introduce the phenomenology of twisted bilayer graphene and present evidence for hBN alignment as manifested in the hierarchy of symmetry-breaking gaps and anomalous magnetoresistance.}, author = {Zhang, Yuxuan and Serlin, Marec and Tschirhart, Charles and Polshyn, Hryhoriy and Zhu, Jiacheng and Balents, Leon and Huber, Martin E. and Taniguchi, Takashi and Watanabe, Kenji and Young, Andrea}, booktitle = {APS March Meeting 2020}, location = {Denver, CO, United States}, number = {1}, publisher = {American Physical Society}, title = {{Intrinsic quantized anomalous Hall effect in a moiré heterostructure, part I: Device fabrication and transport}}, volume = {65}, year = {2020}, }