--- _id: '11059' abstract: - lang: eng text: The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing. article_processing_charge: No article_type: review author: - first_name: Abigail full_name: Buchwalter, Abigail last_name: Buchwalter - first_name: Jeanae M. full_name: Kaneshiro, Jeanae M. last_name: Kaneshiro - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: 'Buchwalter A, Kaneshiro JM, Hetzer M. Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. 2019;20(1):39-50. doi:10.1038/s41576-018-0063-5' apa: 'Buchwalter, A., Kaneshiro, J. M., & Hetzer, M. (2019). Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. Springer Nature. https://doi.org/10.1038/s41576-018-0063-5' chicago: 'Buchwalter, Abigail, Jeanae M. Kaneshiro, and Martin Hetzer. “Coaching from the Sidelines: The Nuclear Periphery in Genome Regulation.” Nature Reviews Genetics. Springer Nature, 2019. https://doi.org/10.1038/s41576-018-0063-5.' ieee: 'A. Buchwalter, J. M. Kaneshiro, and M. Hetzer, “Coaching from the sidelines: The nuclear periphery in genome regulation,” Nature Reviews Genetics, vol. 20, no. 1. Springer Nature, pp. 39–50, 2019.' ista: 'Buchwalter A, Kaneshiro JM, Hetzer M. 2019. Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. 20(1), 39–50.' mla: 'Buchwalter, Abigail, et al. “Coaching from the Sidelines: The Nuclear Periphery in Genome Regulation.” Nature Reviews Genetics, vol. 20, no. 1, Springer Nature, 2019, pp. 39–50, doi:10.1038/s41576-018-0063-5.' short: A. Buchwalter, J.M. Kaneshiro, M. Hetzer, Nature Reviews Genetics 20 (2019) 39–50. date_created: 2022-04-07T07:44:45Z date_published: 2019-01-01T00:00:00Z date_updated: 2022-07-18T08:31:42Z day: '01' doi: 10.1038/s41576-018-0063-5 extern: '1' external_id: pmid: - '30356165' intvolume: ' 20' issue: '1' keyword: - Genetics (clinical) - Genetics - Molecular Biology language: - iso: eng month: '01' oa_version: None page: 39-50 pmid: 1 publication: Nature Reviews Genetics publication_identifier: eissn: - 1471-0064 issn: - 1471-0056 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Coaching from the sidelines: The nuclear periphery in genome regulation' type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 20 year: '2019' ... --- _id: '11499' abstract: - lang: eng text: Deep optical spectroscopic surveys of galaxies provide a unique opportunity to investigate rest-frame ultra-violet (UV) emission line properties of galaxies at z ∼ 2 − 4.5. Here we combine VLT/MUSE Guaranteed Time Observations of the Hubble Deep Field South, Ultra Deep Field, COSMOS, and several quasar fields with other publicly available data from VLT/VIMOS and VLT/FORS2 to construct a catalogue of He II λ1640 emitters at z ≳ 2. The deepest areas of our MUSE pointings reach a 3σ line flux limit of 3.1 × 10−19 erg s−1 cm−2. After discarding broad-line active galactic nuclei, we find 13 He II λ1640 detections from MUSE with a median MUV = −20.1 and 21 tentative He II λ1640 detections from other public surveys. Excluding Lyα, all except two galaxies in our sample show at least one other rest-UV emission line, with C III] λ1907, λ1909 being the most prominent. We use multi-wavelength data available in the Hubble legacy fields to derive basic galaxy properties of our sample through spectral energy distribution fitting techniques. Taking advantage of the high-quality spectra obtained by MUSE (∼10 − 30 h of exposure time per pointing), we use photo-ionisation models to study the rest-UV emission line diagnostics of the He II λ1640 emitters. Line ratios of our sample can be reproduced by moderately sub-solar photo-ionisation models, however, we find that including effects of binary stars lead to degeneracies in most free parameters. Even after considering extra ionising photons produced by extreme sub-solar metallicity binary stellar models, photo-ionisation models are unable to reproduce rest-frame He II λ1640 equivalent widths (∼0.2 − 10 Å), thus additional mechanisms are necessary in models to match the observed He II λ1640 properties. acknowledgement: 'The authors wish to thank the referee for constructive comments that improved the paper substantially. We thank the BPASS team for making the stellar population models available. We thank Elizabeth Stanway, Claus Leitherer, Daniel Schaerer, Jorick Vink, and Nell Byler for insightful discussions. We thank the Lorentz Centre and the scientific organizers of the Characterizing galaxies with spectroscopy with a view for JWST workshop held at the Lorentz Centre in 2017 October, which promoted useful discussions in the wider community. TN, JB, and RB acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) top grant TOP1.16.057. AF acknowledges support from the ERC via an Advanced Grant under grant agreement no. 339659-MUSICOS. JB acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003, and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). JR acknowledges support from the ERC Starting grant 336736 (CALENDS). This research made use of astropy (http://www.astropy.org) a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018) and pandas (McKinney 2010). Figures were generated using matplotlib (Hunter 2007) and seaborn (https://seaborn.pydata.org). Facilities: VLT (MUSE).' article_number: A89 article_processing_charge: No article_type: original author: - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Leindert full_name: Boogaard, Leindert last_name: Boogaard - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Sebastiano full_name: Cantalupo, Sebastiano last_name: Cantalupo - first_name: Anna full_name: Feltre, Anna last_name: Feltre - first_name: Wolfram full_name: Kollatschny, Wolfram last_name: Kollatschny - first_name: Raffaella Anna full_name: Marino, Raffaella Anna last_name: Marino - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Mieke full_name: Paalvast, Mieke last_name: Paalvast - first_name: Johan full_name: Richard, Johan last_name: Richard - first_name: Anne full_name: Verhamme, Anne last_name: Verhamme citation: ama: Nanayakkara T, Brinchmann J, Boogaard L, et al. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 2019;648. doi:10.1051/0004-6361/201834565 apa: Nanayakkara, T., Brinchmann, J., Boogaard, L., Bouwens, R., Cantalupo, S., Feltre, A., … Verhamme, A. (2019). Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834565 chicago: Nanayakkara, Themiya, Jarle Brinchmann, Leindert Boogaard, Rychard Bouwens, Sebastiano Cantalupo, Anna Feltre, Wolfram Kollatschny, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834565. ieee: T. Nanayakkara et al., “Exploring He II λ1640 emission line properties at z ∼2−4,” Astronomy & Astrophysics, vol. 648. EDP Sciences, 2019. ista: Nanayakkara T, Brinchmann J, Boogaard L, Bouwens R, Cantalupo S, Feltre A, Kollatschny W, Marino RA, Maseda M, Matthee JJ, Paalvast M, Richard J, Verhamme A. 2019. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 648, A89. mla: Nanayakkara, Themiya, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics, vol. 648, A89, EDP Sciences, 2019, doi:10.1051/0004-6361/201834565. short: T. Nanayakkara, J. Brinchmann, L. Boogaard, R. Bouwens, S. Cantalupo, A. Feltre, W. Kollatschny, R.A. Marino, M. Maseda, J.J. Matthee, M. Paalvast, J. Richard, A. Verhamme, Astronomy & Astrophysics 648 (2019). date_created: 2022-07-06T09:07:06Z date_published: 2019-04-16T00:00:00Z date_updated: 2022-07-19T09:36:08Z day: '16' doi: 10.1051/0004-6361/201834565 extern: '1' external_id: arxiv: - '1902.05960' intvolume: ' 648' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: ISM / galaxies: star formation / galaxies: evolution / galaxies: high-redshift' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.05960 month: '04' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1051/0004-6361/201834565e scopus_import: '1' status: public title: Exploring He II λ1640 emission line properties at z ∼2−4 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 648 year: '2019' ... --- _id: '11505' abstract: - lang: eng text: "Contact. This paper presents the results obtained with the Multi-Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope on the faint end of the Lyman-alpha luminosity function (LF) based on deep observations of four lensing clusters. The goal of our project is to set strong constraints on the relative contribution of the Lyman-alpha emitter (LAE) population to cosmic reionization.\r\n\r\nAims. The precise aim of the present study is to further constrain the abundance of LAEs by taking advantage of the magnification provided by lensing clusters to build a blindly selected sample of galaxies which is less biased than current blank field samples in redshift and luminosity. By construction, this sample of LAEs is complementary to those built from deep blank fields, whether observed by MUSE or by other facilities, and makes it possible to determine the shape of the LF at fainter levels, as well as its evolution with redshift.\r\n\r\nMethods. We selected a sample of 156 LAEs with redshifts between 2.9 ≤ z ≤ 6.7 and magnification-corrected luminosities in the range 39 ≲ log LLyα [erg s−1] ≲43. To properly take into account the individual differences in detection conditions between the LAEs when computing the LF, including lensing configurations, and spatial and spectral morphologies, the non-parametric 1/Vmax method was adopted. The price to pay to benefit from magnification is a reduction of the effective volume of the survey, together with a more complex analysis procedure to properly determine the effective volume Vmax for each galaxy. In this paper we present a complete procedure for the determination of the LF based on IFU detections in lensing clusters. This procedure, including some new methods for masking, effective volume integration and (individual) completeness determinations, has been fully automated when possible, and it can be easily generalized to the analysis of IFU observations in blank fields.\r\n\r\nResults. As a result of this analysis, the Lyman-alpha LF has been obtained in four different redshift bins: 2.9 <  z <  6, 7, 2.9 <  z <  4.0, 4.0 <  z <  5.0, and 5.0 <  z <  6.7 with constraints down to log LLyα = 40.5. From our data only, no significant evolution of LF mean slope can be found. When performing a Schechter analysis also including data from the literature to complete the present sample towards the brightest luminosities, a steep faint end slope was measured varying from α = −1.69−0.08+0.08 to α = −1.87−0.12+0.12 between the lowest and the highest redshift bins.\r\n\r\nConclusions. The contribution of the LAE population to the star formation rate density at z ∼ 6 is ≲50% depending on the luminosity limit considered, which is of the same order as the Lyman-break galaxy (LBG) contribution. The evolution of the LAE contribution with redshift depends on the assumed escape fraction of Lyman-alpha photons, and appears to slightly increase with increasing redshift when this fraction is conservatively set to one. Depending on the intersection between the LAE/LBG populations, the contribution of the observed galaxies to the ionizing flux may suffice to keep the universe ionized at z ∼ 6." acknowledgement: We thank the anonymous referee for their critical review and useful suggestions. This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government programme managed by the ANR. Partially funded by the ERC starting grant CALENDS (JR, VP, BC, JM), the Agence Nationale de la recherche bearing the reference ANR-13-BS05-0010-02 (FOGHAR), and the “Programme National de Cosmologie and Galaxies” (PNCG) of CNRS/INSU, France. GdV, RP, JR, GM, JM, BC, and VP also acknowledge support by the Programa de Cooperacion Cientifica – ECOS SUD Program C16U02. NL acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 669253), ABD acknowledges support from the ERC advanced grant “Cosmic Gas”. LW acknowledges support by the Competitive Fund of the Leibniz Association through grant SAW-2015-AIP-2, and TG acknowledges support from the European Research Council under grant agreement ERC-stg-757258 (TRIPLE).. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 060.A-9345, 094.A-0115, 095.A-0181, 096.A-0710, 097.A0269, 100.A-0249, and 294.A-5032. Also based on observations obtained with the NASA/ESA Hubble Space Telescope, retrieved from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). All plots in this paper were created using Matplotlib (Hunter 2007). article_number: A3 article_processing_charge: No article_type: original author: - first_name: G. full_name: de La Vieuville, G. last_name: de La Vieuville - first_name: D. full_name: Bina, D. last_name: Bina - first_name: R. full_name: Pello, R. last_name: Pello - first_name: G. full_name: Mahler, G. last_name: Mahler - first_name: J. full_name: Richard, J. last_name: Richard - first_name: A. B. full_name: Drake, A. B. last_name: Drake - first_name: E. C. full_name: Herenz, E. C. last_name: Herenz - first_name: F. E. full_name: Bauer, F. E. last_name: Bauer - first_name: B. full_name: Clément, B. last_name: Clément - first_name: D. full_name: Lagattuta, D. last_name: Lagattuta - first_name: N. full_name: Laporte, N. last_name: Laporte - first_name: J. full_name: Martinez, J. last_name: Martinez - first_name: V. full_name: Patrício, V. last_name: Patrício - first_name: L. full_name: Wisotzki, L. last_name: Wisotzki - first_name: J. full_name: Zabl, J. last_name: Zabl - first_name: R. J. full_name: Bouwens, R. J. last_name: Bouwens - first_name: T. full_name: Contini, T. last_name: Contini - first_name: T. full_name: Garel, T. last_name: Garel - first_name: B. full_name: Guiderdoni, B. last_name: Guiderdoni - first_name: R. A. full_name: Marino, R. A. last_name: Marino - first_name: M. V. full_name: Maseda, M. V. last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: J. full_name: Schaye, J. last_name: Schaye - first_name: G. full_name: Soucail, G. last_name: Soucail citation: ama: de La Vieuville G, Bina D, Pello R, et al. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 2019;628. doi:10.1051/0004-6361/201834471 apa: de La Vieuville, G., Bina, D., Pello, R., Mahler, G., Richard, J., Drake, A. B., … Soucail, G. (2019). Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834471 chicago: La Vieuville, G. de, D. Bina, R. Pello, G. Mahler, J. Richard, A. B. Drake, E. C. Herenz, et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834471. ieee: G. de La Vieuville et al., “Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE,” Astronomy & Astrophysics, vol. 628. EDP Sciences, 2019. ista: de La Vieuville G, Bina D, Pello R, Mahler G, Richard J, Drake AB, Herenz EC, Bauer FE, Clément B, Lagattuta D, Laporte N, Martinez J, Patrício V, Wisotzki L, Zabl J, Bouwens RJ, Contini T, Garel T, Guiderdoni B, Marino RA, Maseda MV, Matthee JJ, Schaye J, Soucail G. 2019. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 628, A3. mla: de La Vieuville, G., et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics, vol. 628, A3, EDP Sciences, 2019, doi:10.1051/0004-6361/201834471. short: G. de La Vieuville, D. Bina, R. Pello, G. Mahler, J. Richard, A.B. Drake, E.C. Herenz, F.E. Bauer, B. Clément, D. Lagattuta, N. Laporte, J. Martinez, V. Patrício, L. Wisotzki, J. Zabl, R.J. Bouwens, T. Contini, T. Garel, B. Guiderdoni, R.A. Marino, M.V. Maseda, J.J. Matthee, J. Schaye, G. Soucail, Astronomy & Astrophysics 628 (2019). date_created: 2022-07-06T10:09:36Z date_published: 2019-07-25T00:00:00Z date_updated: 2022-07-19T09:36:31Z day: '25' doi: 10.1051/0004-6361/201834471 extern: '1' external_id: arxiv: - '1905.13696' intvolume: ' 628' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'gravitational lensing: strong / galaxies: high-redshift / dark ages' - reionization - 'first stars / galaxies: clusters: general / galaxies: luminosity function' - mass function language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.13696 month: '07' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 628 year: '2019' ... --- _id: '11507' abstract: - lang: eng text: 'Lyman-α (Lyα) is intrinsically the brightest line emitted from active galaxies. While it originates from many physical processes, for star-forming galaxies the intrinsic Lyα luminosity is a direct tracer of the Lyman-continuum (LyC) radiation produced by the most massive O- and early-type B-stars (M⋆ ≳ 10 M⊙) with lifetimes of a few Myrs. As such, Lyα luminosity should be an excellent instantaneous star formation rate (SFR) indicator. However, its resonant nature and susceptibility to dust as a rest-frame UV photon makes Lyα very hard to interpret due to the uncertain Lyα escape fraction, fesc, Lyα. Here we explore results from the CAlibrating LYMan-α with Hα (CALYMHA) survey at z = 2.2, follow-up of Lyα emitters (LAEs) at z = 2.2 − 2.6 and a z ∼ 0−0.3 compilation of LAEs to directly measure fesc, Lyα with Hα. We derive a simple empirical relation that robustly retrieves fesc, Lyα as a function of Lyα rest-frame EW (EW0): fesc,Lyα = 0.0048 EW0[Å] ± 0.05 and we show that it constrains a well-defined anti-correlation between ionisation efficiency (ξion) and dust extinction in LAEs. Observed Lyα luminosities and EW0 are easy measurable quantities at high redshift, thus making our relation a practical tool to estimate intrinsic Lyα and LyC luminosities under well controlled and simple assumptions. Our results allow observed Lyα luminosities to be used to compute SFRs for LAEs at z ∼ 0−2.6 within ±0.2 dex of the Hα dust corrected SFRs. We apply our empirical SFR(Lyα,EW0) calibration to several sources at z ≥ 2.6 to find that star-forming LAEs have SFRs typically ranging from 0.1 to 20 M⊙ yr−1 and that our calibration might be even applicable for the most luminous LAEs within the epoch of re-ionisation. Our results imply high ionisation efficiencies (log10[ξion/Hz erg−1] = 25.4−25.6) and low dust content in LAEs across cosmic time, and will be easily tested with future observations with JWST which can obtain Hα and Hβ measurements for high-redshift LAEs.' acknowledgement: We thank the anonymous referees for multiple comments and suggestions which have improved the manuscript. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We have benefited greatly from the publicly available programming language PYTHON, including the NUMPY & SCIPY (Van Der Walt et al. 2011; Jones et al. 2001), MATPLOTLIB (Hunter 2007) and ASTROPY (Astropy Collaboration 2013) packages, and the TOPCAT analysis program (Taylor 2013). The results and samples of LAEs used for this paper are publicly available (see e.g. Sobral et al. 2017, 2018a) and we also provide the toy model used as a PYTHON script. article_number: A157 article_processing_charge: No article_type: original author: - first_name: David full_name: Sobral, David last_name: Sobral - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: 'Sobral D, Matthee JJ. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 2019;623. doi:10.1051/0004-6361/201833075' apa: 'Sobral, D., & Matthee, J. J. (2019). Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201833075' chicago: 'Sobral, David, and Jorryt J Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201833075.' ieee: 'D. Sobral and J. J. Matthee, “Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator,” Astronomy & Astrophysics, vol. 623. EDP Sciences, 2019.' ista: 'Sobral D, Matthee JJ. 2019. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 623, A157.' mla: 'Sobral, David, and Jorryt J. Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics, vol. 623, A157, EDP Sciences, 2019, doi:10.1051/0004-6361/201833075.' short: D. Sobral, J.J. Matthee, Astronomy & Astrophysics 623 (2019). date_created: 2022-07-06T11:08:16Z date_published: 2019-03-26T00:00:00Z date_updated: 2022-07-19T09:37:20Z day: '26' doi: 10.1051/0004-6361/201833075 extern: '1' external_id: arxiv: - '1803.08923' intvolume: ' 623' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: high-redshift / galaxies: star formation / galaxies: statistics / galaxies: evolution / galaxies: formation / galaxies: ISM' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.08923 month: '03' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: 'Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 623 year: '2019' ... --- _id: '11514' abstract: - lang: eng text: We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) HUDF Survey and multiwavelength data to uniquely associate all 16 line emitters, detected in the ALMA data without preselection, with rotational transitions of carbon monoxide (CO). We identify 10 as CO(2–1) at 1 < z < 2, 5 as CO(3–2) at 2 < z < 3, and 1 as CO(4–3) at z = 3.6. Using the MUSE data as a prior, we identify two additional CO(2–1) emitters, increasing the total sample size to 18. We infer metallicities consistent with (super-)solar for the CO-detected galaxies at z ≤ 1.5, motivating our choice of a Galactic conversion factor between CO luminosity and molecular gas mass for these galaxies. Using deep Chandra imaging of the HUDF, we determine an X-ray AGN fraction of 20% and 60% among the CO emitters at z ∼ 1.4 and z ∼ 2.6, respectively. Being a CO-flux-limited survey, ASPECS-LP detects molecular gas in galaxies on, above, and below the main sequence (MS) at z ∼ 1.4. For stellar masses ≥1010 (1010.5) ${M}_{\odot }$, we detect about 40% (50%) of all galaxies in the HUDF at 1 < z < 2 (2 < z < 3). The combination of ALMA and MUSE integral-field spectroscopy thus enables an unprecedented view of MS galaxies during the peak of galaxy formation. acknowledgement: "We are grateful to the referee for providing a constructive report. L.A.B. wants to thank Madusha L.P. Gunawardhana for her help with platefit. Based on observations collected at the European Southern Observatory under ESO programme(s): 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00324.L. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.\r\n\r\n\"Este trabajo contó con el apoyo de CONICYT+Programa de Astronomía+ Fondo CHINA-CONICYT\" J.G-L. acknowledges partial support from ALMA-CONICYT project 31160033. F.E.B. acknowledges support from CONICYT grant Basal AFB-170002 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB). J.B. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003., and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). T.D-S. acknowledges support from ALMA-CONYCIT project 31130005 and FONDECYT project 1151239. J.H. acknowledges support of the VIDI research programme with project number 639.042.611, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). D.R. acknowledges support from the National Science Foundation under grant No. AST-1614213. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334) and STFC (ST/P000541/1)\r\n\r\nWork on Gnuastro has been funded by the Japanese MEXT scholarship and its Grant-in-Aid for Scientific Research (21244012, 24253003), the ERC advanced grant 339659-MUSICOS, European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN, and from the Spanish MINECO under grant No. AYA2016-76219-P." article_number: '140' article_processing_charge: No article_type: original author: - first_name: Leindert A. full_name: Boogaard, Leindert A. last_name: Boogaard - first_name: Roberto full_name: Decarli, Roberto last_name: Decarli - first_name: Jorge full_name: González-López, Jorge last_name: González-López - first_name: Paul full_name: van der Werf, Paul last_name: van der Werf - first_name: Fabian full_name: Walter, Fabian last_name: Walter - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Manuel full_name: Aravena, Manuel last_name: Aravena - first_name: Chris full_name: Carilli, Chris last_name: Carilli - first_name: Franz Erik full_name: Bauer, Franz Erik last_name: Bauer - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Thierry full_name: Contini, Thierry last_name: Contini - first_name: Pierre full_name: Cox, Pierre last_name: Cox - first_name: Elisabete full_name: da Cunha, Elisabete last_name: da Cunha - first_name: Emanuele full_name: Daddi, Emanuele last_name: Daddi - first_name: Tanio full_name: Díaz-Santos, Tanio last_name: Díaz-Santos - first_name: Jacqueline full_name: Hodge, Jacqueline last_name: Hodge - first_name: Hanae full_name: Inami, Hanae last_name: Inami - first_name: Rob full_name: Ivison, Rob last_name: Ivison - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Pascal full_name: Oesch, Pascal last_name: Oesch - first_name: Gergö full_name: Popping, Gergö last_name: Popping - first_name: Dominik full_name: Riechers, Dominik last_name: Riechers - first_name: Joop full_name: Schaye, Joop last_name: Schaye - first_name: Sander full_name: Schouws, Sander last_name: Schouws - first_name: Ian full_name: Smail, Ian last_name: Smail - first_name: Axel full_name: Weiss, Axel last_name: Weiss - first_name: Lutz full_name: Wisotzki, Lutz last_name: Wisotzki - first_name: Roland full_name: Bacon, Roland last_name: Bacon - first_name: Paulo C. full_name: Cortes, Paulo C. last_name: Cortes - first_name: Hans-Walter full_name: Rix, Hans-Walter last_name: Rix - first_name: Rachel S. full_name: Somerville, Rachel S. last_name: Somerville - first_name: Mark full_name: Swinbank, Mark last_name: Swinbank - first_name: Jeff full_name: Wagg, Jeff last_name: Wagg citation: ama: 'Boogaard LA, Decarli R, González-López J, et al. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 2019;882(2). doi:10.3847/1538-4357/ab3102' apa: 'Boogaard, L. A., Decarli, R., González-López, J., van der Werf, P., Walter, F., Bouwens, R., … Wagg, J. (2019). The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab3102' chicago: 'Boogaard, Leindert A., Roberto Decarli, Jorge González-López, Paul van der Werf, Fabian Walter, Rychard Bouwens, Manuel Aravena, et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab3102.' ieee: 'L. A. Boogaard et al., “The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy,” The Astrophysical Journal, vol. 882, no. 2. IOP Publishing, 2019.' ista: 'Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.' mla: 'Boogaard, Leindert A., et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal, vol. 882, no. 2, 140, IOP Publishing, 2019, doi:10.3847/1538-4357/ab3102.' short: L.A. Boogaard, R. Decarli, J. González-López, P. van der Werf, F. Walter, R. Bouwens, M. Aravena, C. Carilli, F.E. Bauer, J. Brinchmann, T. Contini, P. Cox, E. da Cunha, E. Daddi, T. Díaz-Santos, J. Hodge, H. Inami, R. Ivison, M. Maseda, J.J. Matthee, P. Oesch, G. Popping, D. Riechers, J. Schaye, S. Schouws, I. Smail, A. Weiss, L. Wisotzki, R. Bacon, P.C. Cortes, H.-W. Rix, R.S. Somerville, M. Swinbank, J. Wagg, The Astrophysical Journal 882 (2019). date_created: 2022-07-06T13:31:35Z date_published: 2019-09-11T00:00:00Z date_updated: 2022-07-19T09:50:55Z day: '11' doi: 10.3847/1538-4357/ab3102 extern: '1' external_id: arxiv: - '1903.09167' intvolume: ' 882' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.09167 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 882 year: '2019' ...