--- _id: '10354' abstract: - lang: eng text: "Background\r\nESCRT-III is a membrane remodelling filament with the unique ability to cut membranes from the inside of the membrane neck. It is essential for the final stage of cell division, the formation of vesicles, the release of viruses, and membrane repair. Distinct from other cytoskeletal filaments, ESCRT-III filaments do not consume energy themselves, but work in conjunction with another ATP-consuming complex. Despite rapid progress in describing the cell biology of ESCRT-III, we lack an understanding of the physical mechanisms behind its force production and membrane remodelling.\r\nResults\r\nHere we present a minimal coarse-grained model that captures all the experimentally reported cases of ESCRT-III driven membrane sculpting, including the formation of downward and upward cones and tubules. This model suggests that a change in the geometry of membrane bound ESCRT-III filaments—from a flat spiral to a 3D helix—drives membrane deformation. We then show that such repetitive filament geometry transitions can induce the fission of cargo-containing vesicles.\r\nConclusions\r\nOur model provides a general physical mechanism that explains the full range of ESCRT-III-dependent membrane remodelling and scission events observed in cells. This mechanism for filament force production is distinct from the mechanisms described for other cytoskeletal elements discovered so far. The mechanistic principles revealed here suggest new ways of manipulating ESCRT-III-driven processes in cells and could be used to guide the engineering of synthetic membrane-sculpting systems." acknowledgement: We thank Jeremy Carlton, Mike Staddon, Geraint Harker, and the Wellcome Trust Consortium “Archaeal Origins of Eukaryotic Cell Organisation” for fruitful conversations. We thank Peter Wirnsberger and Tine Curk for discussions about the membrane model implementation. article_number: '82' article_processing_charge: No article_type: original author: - first_name: Lena full_name: Harker-Kirschneck, Lena last_name: Harker-Kirschneck - first_name: Buzz full_name: Baum, Buzz last_name: Baum - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 citation: ama: Harker-Kirschneck L, Baum B, Šarić A. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. 2019;17(1). doi:10.1186/s12915-019-0700-2 apa: Harker-Kirschneck, L., Baum, B., & Šarić, A. (2019). Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. Springer Nature. https://doi.org/10.1186/s12915-019-0700-2 chicago: Harker-Kirschneck, Lena, Buzz Baum, and Anđela Šarić. “Changes in ESCRT-III Filament Geometry Drive Membrane Remodelling and Fission in Silico.” BMC Biology. Springer Nature, 2019. https://doi.org/10.1186/s12915-019-0700-2. ieee: L. Harker-Kirschneck, B. Baum, and A. Šarić, “Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico,” BMC Biology, vol. 17, no. 1. Springer Nature, 2019. ista: Harker-Kirschneck L, Baum B, Šarić A. 2019. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. 17(1), 82. mla: Harker-Kirschneck, Lena, et al. “Changes in ESCRT-III Filament Geometry Drive Membrane Remodelling and Fission in Silico.” BMC Biology, vol. 17, no. 1, 82, Springer Nature, 2019, doi:10.1186/s12915-019-0700-2. short: L. Harker-Kirschneck, B. Baum, A. Šarić, BMC Biology 17 (2019). date_created: 2021-11-26T11:25:03Z date_published: 2019-10-22T00:00:00Z date_updated: 2021-11-26T11:54:29Z day: '22' ddc: - '570' doi: 10.1186/s12915-019-0700-2 extern: '1' external_id: pmid: - '31640700' file: - access_level: open_access checksum: 31d8bae55a376d30925f53f7e1a02396 content_type: application/pdf creator: cchlebak date_created: 2021-11-26T11:37:54Z date_updated: 2021-11-26T11:37:54Z file_id: '10356' file_name: 2019_BMCBio_Harker_Kirschneck.pdf file_size: 1648926 relation: main_file success: 1 file_date_updated: 2021-11-26T11:37:54Z has_accepted_license: '1' intvolume: ' 17' issue: '1' keyword: - cell biology language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/559898 month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: BMC Biology publication_identifier: issn: - 1741-7007 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 17 year: '2019' ... --- _id: '10355' abstract: - lang: eng text: The molecular machinery of life is largely created via self-organisation of individual molecules into functional assemblies. Minimal coarse-grained models, in which a whole macromolecule is represented by a small number of particles, can be of great value in identifying the main driving forces behind self-organisation in cell biology. Such models can incorporate data from both molecular and continuum scales, and their results can be directly compared to experiments. Here we review the state of the art of models for studying the formation and biological function of macromolecular assemblies in living organisms. We outline the key ingredients of each model and their main findings. We illustrate the contribution of this class of simulations to identifying the physical mechanisms behind life and diseases, and discuss their future developments. acknowledgement: We acknowledge funding from EPSRC (A.E.H. and A.Š.), the Academy of Medical Sciences (J.K. and A.Š.), the Wellcome Trust (J.K. and A.Š.), and the Royal Society (A.Š.). We thank Shiladitya Banerjee and Nikola Ojkic for critically reading the manuscript, and Claudia Flandoli for helping us with figures and illustrations. article_processing_charge: No article_type: original author: - first_name: Anne E full_name: Hafner, Anne E last_name: Hafner - first_name: Johannes full_name: Krausser, Johannes last_name: Krausser - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 citation: ama: Hafner AE, Krausser J, Šarić A. Minimal coarse-grained models for molecular self-organisation in biology. Current Opinion in Structural Biology. 2019;58:43-52. doi:10.1016/j.sbi.2019.05.018 apa: Hafner, A. E., Krausser, J., & Šarić, A. (2019). Minimal coarse-grained models for molecular self-organisation in biology. Current Opinion in Structural Biology. Elsevier. https://doi.org/10.1016/j.sbi.2019.05.018 chicago: Hafner, Anne E, Johannes Krausser, and Anđela Šarić. “Minimal Coarse-Grained Models for Molecular Self-Organisation in Biology.” Current Opinion in Structural Biology. Elsevier, 2019. https://doi.org/10.1016/j.sbi.2019.05.018. ieee: A. E. Hafner, J. Krausser, and A. Šarić, “Minimal coarse-grained models for molecular self-organisation in biology,” Current Opinion in Structural Biology, vol. 58. Elsevier, pp. 43–52, 2019. ista: Hafner AE, Krausser J, Šarić A. 2019. Minimal coarse-grained models for molecular self-organisation in biology. Current Opinion in Structural Biology. 58, 43–52. mla: Hafner, Anne E., et al. “Minimal Coarse-Grained Models for Molecular Self-Organisation in Biology.” Current Opinion in Structural Biology, vol. 58, Elsevier, 2019, pp. 43–52, doi:10.1016/j.sbi.2019.05.018. short: A.E. Hafner, J. Krausser, A. Šarić, Current Opinion in Structural Biology 58 (2019) 43–52. date_created: 2021-11-26T11:33:21Z date_published: 2019-06-18T00:00:00Z date_updated: 2021-11-26T11:54:25Z day: '18' doi: 10.1016/j.sbi.2019.05.018 extern: '1' external_id: pmid: - '31226513' intvolume: ' 58' keyword: - molecular biology - structural biology language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.09349 month: '06' oa: 1 oa_version: Preprint page: 43-52 pmid: 1 publication: Current Opinion in Structural Biology publication_identifier: issn: - 0959-440X publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Minimal coarse-grained models for molecular self-organisation in biology type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 58 year: '2019' ... --- _id: '10621' abstract: - lang: eng text: Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3,4,5,6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. acknowledgement: The authors thank S. Das Sarma and F. Wu for sharing their unpublished theoretical results, and acknowledge further discussions with L. Balents and T. Senthil. Work at both Columbia and UCSB was funded by the Army Research Office under award W911NF-17-1-0323. Sample device design and fabrication was partially supported by DoE Pro-QM EFRC (DE-SC0019443). A.F.Y. and C.R.D. separately acknowledge the support of the David and Lucile Packard Foundation. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. A portion of this work was carried out at the KITP, Santa Barbara, supported by the National Science Foundation under grant number NSF PHY-1748958. article_processing_charge: No article_type: original author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Yuxuan full_name: Zhang, Yuxuan last_name: Zhang - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young citation: ama: Polshyn H, Yankowitz M, Chen S, et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. 2019;15(10):1011-1016. doi:10.1038/s41567-019-0596-3 apa: Polshyn, H., Yankowitz, M., Chen, S., Zhang, Y., Watanabe, K., Taniguchi, T., … Young, A. F. (2019). Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0596-3 chicago: Polshyn, Hryhoriy, Matthew Yankowitz, Shaowen Chen, Yuxuan Zhang, K. Watanabe, T. Taniguchi, Cory R. Dean, and Andrea F. Young. “Large Linear-in-Temperature Resistivity in Twisted Bilayer Graphene.” Nature Physics. Springer Nature, 2019. https://doi.org/10.1038/s41567-019-0596-3. ieee: H. Polshyn et al., “Large linear-in-temperature resistivity in twisted bilayer graphene,” Nature Physics, vol. 15, no. 10. Springer Nature, pp. 1011–1016, 2019. ista: Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean CR, Young AF. 2019. Large linear-in-temperature resistivity in twisted bilayer graphene. Nature Physics. 15(10), 1011–1016. mla: Polshyn, Hryhoriy, et al. “Large Linear-in-Temperature Resistivity in Twisted Bilayer Graphene.” Nature Physics, vol. 15, no. 10, Springer Nature, 2019, pp. 1011–16, doi:10.1038/s41567-019-0596-3. short: H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe, T. Taniguchi, C.R. Dean, A.F. Young, Nature Physics 15 (2019) 1011–1016. date_created: 2022-01-13T15:00:58Z date_published: 2019-08-05T00:00:00Z date_updated: 2022-01-20T09:33:38Z day: '05' doi: 10.1038/s41567-019-0596-3 extern: '1' external_id: arxiv: - '1902.00763' intvolume: ' 15' issue: '10' keyword: - general physics and astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.00763 month: '08' oa: 1 oa_version: Preprint page: 1011-1016 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Large linear-in-temperature resistivity in twisted bilayer graphene type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 15 year: '2019' ... --- _id: '10622' abstract: - lang: eng text: We demonstrate a method for manipulating small ensembles of vortices in multiply connected superconducting structures. A micron-size magnetic particle attached to the tip of a silicon cantilever is used to locally apply magnetic flux through the superconducting structure. By scanning the tip over the surface of the device and by utilizing the dynamical coupling between the vortices and the cantilever, a high-resolution spatial map of the different vortex configurations is obtained. Moving the tip to a particular location in the map stabilizes a distinct multivortex configuration. Thus, the scanning of the tip over a particular trajectory in space permits nontrivial operations to be performed, such as braiding of individual vortices within a larger vortex ensemble—a key capability required by many proposals for topological quantum computing. acknowledgement: We are grateful to Nadya Mason, Taylor Hughes, and Alexey Bezryadin for useful discussions. This work was supported by the DOE Basic Energy Sciences under DE-SC0012649 and the Department of Physics and the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois. article_processing_charge: No article_type: original author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Tyler full_name: Naibert, Tyler last_name: Naibert - first_name: Raffi full_name: Budakian, Raffi last_name: Budakian citation: ama: Polshyn H, Naibert T, Budakian R. Manipulating multivortex states in superconducting structures. Nano Letters. 2019;19(8):5476-5482. doi:10.1021/acs.nanolett.9b01983 apa: Polshyn, H., Naibert, T., & Budakian, R. (2019). Manipulating multivortex states in superconducting structures. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.9b01983 chicago: Polshyn, Hryhoriy, Tyler Naibert, and Raffi Budakian. “Manipulating Multivortex States in Superconducting Structures.” Nano Letters. American Chemical Society, 2019. https://doi.org/10.1021/acs.nanolett.9b01983. ieee: H. Polshyn, T. Naibert, and R. Budakian, “Manipulating multivortex states in superconducting structures,” Nano Letters, vol. 19, no. 8. American Chemical Society, pp. 5476–5482, 2019. ista: Polshyn H, Naibert T, Budakian R. 2019. Manipulating multivortex states in superconducting structures. Nano Letters. 19(8), 5476–5482. mla: Polshyn, Hryhoriy, et al. “Manipulating Multivortex States in Superconducting Structures.” Nano Letters, vol. 19, no. 8, American Chemical Society, 2019, pp. 5476–82, doi:10.1021/acs.nanolett.9b01983. short: H. Polshyn, T. Naibert, R. Budakian, Nano Letters 19 (2019) 5476–5482. date_created: 2022-01-13T15:11:14Z date_published: 2019-06-27T00:00:00Z date_updated: 2022-01-13T15:41:24Z day: '27' doi: 10.1021/acs.nanolett.9b01983 extern: '1' external_id: arxiv: - '1905.06303' pmid: - '31246034' intvolume: ' 19' issue: '8' keyword: - mechanical engineering - condensed matter physics - general materials science - general chemistry - bioengineering language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.06303 month: '06' oa: 1 oa_version: Preprint page: 5476-5482 pmid: 1 publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Manipulating multivortex states in superconducting structures type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 19 year: '2019' ... --- _id: '10625' abstract: - lang: eng text: The discovery of superconductivity and exotic insulating phases in twisted bilayer graphene has established this material as a model system of strongly correlated electrons. To achieve superconductivity, the two layers of graphene need to be at a very precise angle with respect to each other. Yankowitz et al. now show that another experimental knob, hydrostatic pressure, can be used to tune the phase diagram of twisted bilayer graphene (see the Perspective by Feldman). Applying pressure increased the coupling between the layers, which shifted the superconducting transition to higher angles and somewhat higher temperatures. acknowledgement: We thank J. Zhu and H. Zhou for experimental assistance and D. Shahar, A. Millis, O. Vafek, M. Zaletel, L. Balents, C. Xu, A. Bernevig, L. Fu, M. Koshino, and P. Moon for helpful discussions. article_processing_charge: No article_type: original author: - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Yuxuan full_name: Zhang, Yuxuan last_name: Zhang - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: David full_name: Graf, David last_name: Graf - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean citation: ama: Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science. 2019;363(6431):1059-1064. doi:10.1126/science.aav1910 apa: Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., … Dean, C. R. (2019). Tuning superconductivity in twisted bilayer graphene. Science. American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.aav1910 chicago: Yankowitz, Matthew, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang, K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, and Cory R. Dean. “Tuning Superconductivity in Twisted Bilayer Graphene.” Science. American Association for the Advancement of Science (AAAS), 2019. https://doi.org/10.1126/science.aav1910. ieee: M. Yankowitz et al., “Tuning superconductivity in twisted bilayer graphene,” Science, vol. 363, no. 6431. American Association for the Advancement of Science (AAAS), pp. 1059–1064, 2019. ista: Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young AF, Dean CR. 2019. Tuning superconductivity in twisted bilayer graphene. Science. 363(6431), 1059–1064. mla: Yankowitz, Matthew, et al. “Tuning Superconductivity in Twisted Bilayer Graphene.” Science, vol. 363, no. 6431, American Association for the Advancement of Science (AAAS), 2019, pp. 1059–64, doi:10.1126/science.aav1910. short: M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A.F. Young, C.R. Dean, Science 363 (2019) 1059–1064. date_created: 2022-01-14T12:14:58Z date_published: 2019-01-24T00:00:00Z date_updated: 2022-01-14T13:48:32Z day: '24' doi: 10.1126/science.aav1910 extern: '1' external_id: arxiv: - '1808.07865' pmid: - '30679385 ' intvolume: ' 363' issue: '6431' keyword: - multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.07865 month: '01' oa: 1 oa_version: Preprint page: 1059-1064 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science (AAAS) quality_controlled: '1' scopus_import: '1' status: public title: Tuning superconductivity in twisted bilayer graphene type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 363 year: '2019' ... --- _id: '10620' abstract: - lang: eng text: Partially filled Landau levels host competing electronic orders. For example, electron solids may prevail close to integer filling of the Landau levels before giving way to fractional quantum Hall liquids at higher carrier density1,2. Here, we report the observation of an electron solid with non-collinear spin texture in monolayer graphene, consistent with solidification of skyrmions3—topological spin textures characterized by quantized electrical charge4,5. We probe the spin texture of the solids using a modified Corbino geometry that allows ferromagnetic magnons to be launched and detected6,7. We find that magnon transport is highly efficient when one Landau level is filled (ν=1), consistent with quantum Hall ferromagnetic spin polarization. However, even minimal doping immediately quenches the magnon signal while leaving the vanishing low-temperature charge conductivity unchanged. Our results can be understood by the formation of a solid of charged skyrmions near ν=1, whose non-collinear spin texture leads to rapid magnon decay. Data near fractional fillings show evidence of several fractional skyrmion solids, suggesting that graphene hosts a highly tunable landscape of coupled spin and charge orders. acknowledgement: We acknowledge discussions with B. Halperin, C. Huang, A. Macdonald and M. Zalatel. Experimental work at UCSB was supported by the Army Research Office under awards nos. MURI W911NF-16-1-0361 and W911NF-16-1-0482. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT (Japan) and CREST (JPMJCR15F3), JST. A.F.Y. acknowledges the support of the David and Lucile Packard Foundation and and Alfred. P. Sloan Foundation. article_processing_charge: No article_type: original author: - first_name: H. full_name: Zhou, H. last_name: Zhou - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: A. F. full_name: Young, A. F. last_name: Young citation: ama: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. Solids of quantum Hall skyrmions in graphene. Nature Physics. 2019;16(2):154-158. doi:10.1038/s41567-019-0729-8 apa: Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K., & Young, A. F. (2019). Solids of quantum Hall skyrmions in graphene. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-019-0729-8 chicago: Zhou, H., Hryhoriy Polshyn, T. Taniguchi, K. Watanabe, and A. F. Young. “Solids of Quantum Hall Skyrmions in Graphene.” Nature Physics. Springer Nature, 2019. https://doi.org/10.1038/s41567-019-0729-8. ieee: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, and A. F. Young, “Solids of quantum Hall skyrmions in graphene,” Nature Physics, vol. 16, no. 2. Springer Nature, pp. 154–158, 2019. ista: Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young AF. 2019. Solids of quantum Hall skyrmions in graphene. Nature Physics. 16(2), 154–158. mla: Zhou, H., et al. “Solids of Quantum Hall Skyrmions in Graphene.” Nature Physics, vol. 16, no. 2, Springer Nature, 2019, pp. 154–58, doi:10.1038/s41567-019-0729-8. short: H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, A.F. Young, Nature Physics 16 (2019) 154–158. date_created: 2022-01-13T14:45:16Z date_published: 2019-12-16T00:00:00Z date_updated: 2022-01-13T15:34:44Z day: '16' doi: 10.1038/s41567-019-0729-8 extern: '1' intvolume: ' 16' issue: '2' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa_version: None page: 154-158 publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Solids of quantum Hall skyrmions in graphene type: journal_article user_id: ea97e931-d5af-11eb-85d4-e6957dddbf17 volume: 16 year: '2019' ... --- _id: '10664' abstract: - lang: eng text: "Since the discovery of correlated insulators and superconductivity in magic-angle twisted bilayer graphene (tBLG) ([1, 2], JCCM April 2018), theorists have been excitedly pursuing the alluring mix of band topology, symmetry breaking, Mott insulators and superconductivity at play, as well as the potential relation (if any) to high-Tc physics. Now a new stream\r\nof experimental work is arriving which further enriches the story. To briefly recap Episodes 1 and 2 (JCCM April and November 2018), when two graphene layers are stacked with a small rotational mismatch θ, the resulting long-wavelength moire pattern leads to a superlattice potential which reconstructs the low energy band structure. When θ approaches the “magic-angle” θM ∼ 1 ◦, the band structure features eight nearly-flat bands which fill when the electron number per moire unit cell, n/n0, lies between −4 < n/n0 < 4. The bands can be counted as 8 = 2 × 2 × 2: for each spin (2×) and valley (2×) characteristic of monolayergraphene, tBLG has has 2× flat bands which cross at mini-Dirac points." article_processing_charge: No article_type: original author: - first_name: Mathew full_name: Yankowitz, Mathew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: David full_name: Graf, David last_name: Graf - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean - first_name: Aaron L. full_name: Sharpe, Aaron L. last_name: Sharpe - first_name: E.J. full_name: Fox, E.J. last_name: Fox - first_name: A.W. full_name: Barnard, A.W. last_name: Barnard - first_name: Joe full_name: Finney, Joe last_name: Finney citation: ama: Yankowitz M, Chen S, Polshyn H, et al. New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. 2019;03. doi:10.36471/jccm_february_2019_03 apa: Yankowitz, M., Chen, S., Polshyn, H., Watanabe, K., Taniguchi, T., Graf, D., … Finney, J. (2019). New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. Simons Foundation ; University of California, Riverside. https://doi.org/10.36471/jccm_february_2019_03 chicago: Yankowitz, Mathew, Shaowen Chen, Hryhoriy Polshyn, K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, et al. “New Correlated Phenomena in Magic-Angle Twisted Bilayer Graphene/S.” Journal Club for Condensed Matter Physics. Simons Foundation ; University of California, Riverside, 2019. https://doi.org/10.36471/jccm_february_2019_03. ieee: M. Yankowitz et al., “New correlated phenomena in magic-angle twisted bilayer graphene/s,” Journal Club for Condensed Matter Physics, vol. 03. Simons Foundation ; University of California, Riverside, 2019. ista: Yankowitz M, Chen S, Polshyn H, Watanabe K, Taniguchi T, Graf D, Young AF, Dean CR, Sharpe AL, Fox EJ, Barnard AW, Finney J. 2019. New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. 03. mla: Yankowitz, Mathew, et al. “New Correlated Phenomena in Magic-Angle Twisted Bilayer Graphene/S.” Journal Club for Condensed Matter Physics, vol. 03, Simons Foundation ; University of California, Riverside, 2019, doi:10.36471/jccm_february_2019_03. short: M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi, D. Graf, A.F. Young, C.R. Dean, A.L. Sharpe, E.J. Fox, A.W. Barnard, J. Finney, Journal Club for Condensed Matter Physics 03 (2019). date_created: 2022-01-25T15:09:58Z date_published: 2019-02-28T00:00:00Z date_updated: 2022-01-25T15:56:39Z day: '28' doi: 10.36471/jccm_february_2019_03 intvolume: ' 3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.condmatjclub.org/?p=3541 month: '02' oa: 1 oa_version: Published Version publication: Journal Club for Condensed Matter Physics publication_status: published publisher: Simons Foundation ; University of California, Riverside quality_controlled: '1' status: public title: New correlated phenomena in magic-angle twisted bilayer graphene/s type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: '03' year: '2019' ... --- _id: '10619' abstract: - lang: eng text: The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. acknowledgement: The authors acknowledge discussions with A. Macdonald, Y. Saito, and M. Zaletel. article_processing_charge: No article_type: original author: - first_name: M. full_name: Serlin, M. last_name: Serlin - first_name: C. L. full_name: Tschirhart, C. L. last_name: Tschirhart - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Y. full_name: Zhang, Y. last_name: Zhang - first_name: J. full_name: Zhu, J. last_name: Zhu - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: L. full_name: Balents, L. last_name: Balents - first_name: A. F. full_name: Young, A. F. last_name: Young citation: ama: Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 2019;367(6480):900-903. doi:10.1126/science.aay5533 apa: Serlin, M., Tschirhart, C. L., Polshyn, H., Zhang, Y., Zhu, J., Watanabe, K., … Young, A. F. (2019). Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aay5533 chicago: Serlin, M., C. L. Tschirhart, Hryhoriy Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young. “Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure.” Science. American Association for the Advancement of Science, 2019. https://doi.org/10.1126/science.aay5533. ieee: M. Serlin et al., “Intrinsic quantized anomalous Hall effect in a moiré heterostructure,” Science, vol. 367, no. 6480. American Association for the Advancement of Science, pp. 900–903, 2019. ista: Serlin M, Tschirhart CL, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young AF. 2019. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 367(6480), 900–903. mla: Serlin, M., et al. “Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure.” Science, vol. 367, no. 6480, American Association for the Advancement of Science, 2019, pp. 900–03, doi:10.1126/science.aay5533. short: M. Serlin, C.L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, A.F. Young, Science 367 (2019) 900–903. date_created: 2022-01-13T14:21:32Z date_published: 2019-12-19T00:00:00Z date_updated: 2023-02-21T16:00:09Z day: '19' doi: 10.1126/science.aay5533 extern: '1' external_id: arxiv: - '1907.00261' pmid: - '31857492' intvolume: ' 367' issue: '6480' keyword: - multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.00261 month: '12' oa: 1 oa_version: Preprint page: 900-903 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: record: - id: '10697' relation: other status: public - id: '10698' relation: other status: public - id: '10699' relation: other status: public scopus_import: '1' status: public title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 367 year: '2019' ... --- _id: '10724' abstract: - lang: eng text: Twisted bilayer graphene (tBLG) near the flat band condition is a versatile new platform for the study of correlated physics in 2D. Resistive states have been observed at several commensurate fillings of the flat miniband, along with superconducting states near half filling. To better understand the electronic structure of this system, we study electronic transport of graphite gated superconducting tBLG devices in the normal regime. At high magnetic fields, we observe full lifting of the spin and valley degeneracy. The transitions in the splitting of this four-fold degeneracy as a function of carrier density indicate Landau level (LL) crossings, which tilted field measurements show occur between LLs with different valley polarization. Similar LL structure measured in two devices, one with twist angle θ=1.08° at ambient pressure and one at θ=1.27° and 1.33GPa, suggests that the dimensionless combination of twist angle and interlayer coupling controls the relevant details of the band structure. In addition, we find that the temperature dependence of the resistance at B=0 shows linear growth at several hundred Ohm/K in a broad range of temperatures. We discuss the implications for modeling the scattering processes in this system. alternative_title: - Bulletin of the American Physical Society article_number: V14.00008 article_processing_charge: No author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Yuxuan full_name: Zhang, Yuxuan last_name: Zhang - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: David E. full_name: Graf, David E. last_name: Graf - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Polshyn H, Zhang Y, Yankowitz M, et al. Normal state transport in superconducting twisted bilayer graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Polshyn, H., Zhang, Y., Yankowitz, M., Chen, S., Taniguchi, T., Watanabe, K., … Young, A. (2019). Normal state transport in superconducting twisted bilayer graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Polshyn, Hryhoriy, Yuxuan Zhang, Matthew Yankowitz, Shaowen Chen, Takashi Taniguchi, Kenji Watanabe, David E. Graf, Cory R. Dean, and Andrea Young. “Normal State Transport in Superconducting Twisted Bilayer Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: H. Polshyn et al., “Normal state transport in superconducting twisted bilayer graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Polshyn H, Zhang Y, Yankowitz M, Chen S, Taniguchi T, Watanabe K, Graf DE, Dean CR, Young A. 2019. Normal state transport in superconducting twisted bilayer graphene. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, V14.00008.' mla: Polshyn, Hryhoriy, et al. “Normal State Transport in Superconducting Twisted Bilayer Graphene.” APS March Meeting 2019, vol. 64, no. 2, V14.00008, American Physical Society, 2019. short: H. Polshyn, Y. Zhang, M. Yankowitz, S. Chen, T. Taniguchi, K. Watanabe, D.E. Graf, C.R. Dean, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T12:25:04Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:23:13Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/V14.8 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Normal state transport in superconducting twisted bilayer graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10722' abstract: - lang: eng text: Bilayer graphene, rotationally faulted to ~1.1 degree misalignment, has recently been shown to host superconducting and resistive states associated with the formation of a flat electronic band. While numerous theories exist for the origins of both states, direct validation of these theories remains an outstanding experimental problem. Here, we focus on the resistive states occurring at commensurate filling (1/2, 1/4, and 3/4) of the two lowest superlattice bands. We test theoretical proposals that these states arise due to broken spin—and/or valley—symmetry by performing direct magnetic imaging with nanoscale SQUID-on-tip microscopy. This technique provides single-spin resolved magnetometry on sub-100nm length scales. I will present imaging data from our 4.2K nSOT microscope on graphite-gated twisted bilayers near the flat band condition and discuss the implications for the physics of the commensurate resistive states. alternative_title: - Bulletin of the American Physical Society article_number: L14.00006 article_processing_charge: No author: - first_name: Marec full_name: Serlin, Marec last_name: Serlin - first_name: Charles full_name: Tschirhart, Charles last_name: Tschirhart - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Jiacheng full_name: Zhu, Jiacheng last_name: Zhu - first_name: Martin E. full_name: Huber, Martin E. last_name: Huber - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Serlin M, Tschirhart C, Polshyn H, Zhu J, Huber ME, Young A. Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Serlin, M., Tschirhart, C., Polshyn, H., Zhu, J., Huber, M. E., & Young, A. (2019). Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Serlin, Marec, Charles Tschirhart, Hryhoriy Polshyn, Jiacheng Zhu, Martin E. Huber, and Andrea Young. “Direct Imaging of Magnetic Structure in Twisted Bilayer Graphene with Scanning NanoSQUID-On-Tip Microscopy.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: M. Serlin, C. Tschirhart, H. Polshyn, J. Zhu, M. E. Huber, and A. Young, “Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Serlin M, Tschirhart C, Polshyn H, Zhu J, Huber ME, Young A. 2019. Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, L14.00006.' mla: Serlin, Marec, et al. “Direct Imaging of Magnetic Structure in Twisted Bilayer Graphene with Scanning NanoSQUID-On-Tip Microscopy.” APS March Meeting 2019, vol. 64, no. 2, L14.00006, American Physical Society, 2019. short: M. Serlin, C. Tschirhart, H. Polshyn, J. Zhu, M.E. Huber, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T11:54:21Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:25:30Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/L14.6 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10725' abstract: - lang: eng text: Bilayer graphene with ~ 1.1 degrees twist mismatch between the layers hosts a low energy flat band in which the Coulomb interaction is large relative to the bandwidth, promoting correlated insulating states at half band filling, and superconducting (SC) phases with dome-like structure neighboring correlated insulating states. Here we show measurements of a dual-graphite-gated twisted bilayer graphene device, which minimizes charge inhomogeneity. We observe new correlated phases, including for the first time a SC pocket near half-filling of the electron-doped band and resistive states at quarter-filling of both bands that emerge in a magnetic field. Changing the layer polarization with vertical electric field reveals an unexpected competition between SC and correlated insulator phases, which we interpret to result from differences in disorder of each graphene layer and underscores the spatial inhomogeneity like twist angle as a significant source of disorder in these devices [1]. alternative_title: - Bulletin of the American Physical Society article_number: R14.00004 article_processing_charge: No author: - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: David E. full_name: Graf, David E. last_name: Graf - first_name: Andrea full_name: Young, Andrea last_name: Young - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean citation: ama: 'Chen S, Yankowitz M, Polshyn H, et al. Correlated insulating and superconducting phases in twisted bilayer graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Chen, S., Yankowitz, M., Polshyn, H., Watanabe, K., Taniguchi, T., Graf, D. E., … Dean, C. R. (2019). Correlated insulating and superconducting phases in twisted bilayer graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Chen, Shaowen, Matthew Yankowitz, Hryhoriy Polshyn, Kenji Watanabe, Takashi Taniguchi, David E. Graf, Andrea Young, and Cory R. Dean. “Correlated Insulating and Superconducting Phases in Twisted Bilayer Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: S. Chen et al., “Correlated insulating and superconducting phases in twisted bilayer graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Chen S, Yankowitz M, Polshyn H, Watanabe K, Taniguchi T, Graf DE, Young A, Dean CR. 2019. Correlated insulating and superconducting phases in twisted bilayer graphene. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, R14.00004.' mla: Chen, Shaowen, et al. “Correlated Insulating and Superconducting Phases in Twisted Bilayer Graphene.” APS March Meeting 2019, vol. 64, no. 2, R14.00004, American Physical Society, 2019. short: S. Chen, M. Yankowitz, H. Polshyn, K. Watanabe, T. Taniguchi, D.E. Graf, A. Young, C.R. Dean, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T13:48:04Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:24:13Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/R14.4 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - relation: used_in_publication url: https://arxiv.org/abs/1808.07865 status: public title: Correlated insulating and superconducting phases in twisted bilayer graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10723' abstract: - lang: eng text: In monolayer graphene, the interplay of electronic correlations with the internal spin- and valley- degrees of freedom leads to a complex phase diagram of isospin symmetry breaking at high magnetic fields. Recently, Wei et al. (Science (2018)) demonstrated that spin waves can be electrically generated and detected in graphene heterojunctions, allowing direct experiment access to the spin degree of freedom. Here, we apply this technique to high quality graphite-gated graphene devices showing robust fractional quantum Hall phases and isospin phase transitions. We use an edgeless Corbino geometry to eliminate the contributions of edge states to the spin-wave mediated nonlocal voltage, allowing unambiguous identification of spin wave transport signatures. Our data reveal two phases within the ν = 1 plateau. For exactly ν=1, charge is localized but spin waves propagate freely while small carrier doping completely quenches the low-energy spin-wave transport, even as those charges remain localized. We identify this new phase as a spin textured electron solid. We also find that spin-wave transport is modulated by phase transitions in the valley order that preserve spin polarization, suggesting that this technique is sensitive to both spin and valley order. article_number: P01.00004 article_processing_charge: No author: - first_name: Haoxin full_name: Zhou, Haoxin last_name: Zhou - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Takashi full_name: Tanaguchi, Takashi last_name: Tanaguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Zhou H, Polshyn H, Tanaguchi T, Watanabe K, Young A. Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Zhou, H., Polshyn, H., Tanaguchi, T., Watanabe, K., & Young, A. (2019). Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Zhou, Haoxin, Hryhoriy Polshyn, Takashi Tanaguchi, Kenji Watanabe, and Andrea Young. “Spin Wave Transport through Electron Solids and Fractional Quantum Hall Liquids in Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: H. Zhou, H. Polshyn, T. Tanaguchi, K. Watanabe, and A. Young, “Spin wave transport through electron solids and fractional quantum Hall liquids in graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Zhou H, Polshyn H, Tanaguchi T, Watanabe K, Young A. 2019. Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. APS March Meeting 2019. APS: American Physical Society vol. 64, P01.00004.' mla: Zhou, Haoxin, et al. “Spin Wave Transport through Electron Solids and Fractional Quantum Hall Liquids in Graphene.” APS March Meeting 2019, vol. 64, no. 2, P01.00004, American Physical Society, 2019. short: H. Zhou, H. Polshyn, T. Tanaguchi, K. Watanabe, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T12:14:02Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-04T13:59:47Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/P01.4 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Spin wave transport through electron solids and fractional quantum Hall liquids in graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10877' abstract: - lang: eng text: 'This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with piecewise constant dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this third edition, six tools have been applied to solve five different benchmark problems in the category for piecewise constant dynamics: BACH, Lyse, Hy- COMP, PHAVer/SX, PHAVerLite, and VeriSiMPL. Compared to last year, a new tool has participated (HyCOMP) and PHAVerLite has replaced PHAVer-lite. The result is a snap- shot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results probably provide the most complete assessment of tools for the safety verification of continuous and hybrid systems with piecewise constant dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge \fnancial support by the European Commission project\r\nUnCoVerCPS under grant number 643921. Lei Bu is supported by the National Natural Science\r\nFoundation of China (No.61572249)." alternative_title: - EPiC Series in Computing article_processing_charge: No author: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Alessandro full_name: Abate, Alessandro last_name: Abate - first_name: Dieky full_name: Adzkiya, Dieky last_name: Adzkiya - first_name: Anna full_name: Becchi, Anna last_name: Becchi - first_name: Lei full_name: Bu, Lei last_name: Bu - first_name: Alessandro full_name: Cimatti, Alessandro last_name: Cimatti - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Alberto full_name: Griggio, Alberto last_name: Griggio - first_name: Sergio full_name: Mover, Sergio last_name: Mover - first_name: Muhammad Syifa'ul full_name: Mufid, Muhammad Syifa'ul last_name: Mufid - first_name: Idriss full_name: Riouak, Idriss last_name: Riouak - first_name: Stefano full_name: Tonetta, Stefano last_name: Tonetta - first_name: Enea full_name: Zaffanella, Enea last_name: Zaffanella citation: ama: 'Frehse G, Abate A, Adzkiya D, et al. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In: Frehse G, Althoff M, eds. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. Vol 61. EasyChair; 2019:1-13. doi:10.29007/rjwn' apa: 'Frehse, G., Abate, A., Adzkiya, D., Becchi, A., Bu, L., Cimatti, A., … Zaffanella, E. (2019). ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In G. Frehse & M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems (Vol. 61, pp. 1–13). Montreal, Canada: EasyChair. https://doi.org/10.29007/rjwn' chicago: 'Frehse, Goran, Alessandro Abate, Dieky Adzkiya, Anna Becchi, Lei Bu, Alessandro Cimatti, Mirco Giacobbe, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” In ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, 61:1–13. EasyChair, 2019. https://doi.org/10.29007/rjwn.' ieee: 'G. Frehse et al., “ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics,” in ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, Montreal, Canada, 2019, vol. 61, pp. 1–13.' ista: 'Frehse G, Abate A, Adzkiya D, Becchi A, Bu L, Cimatti A, Giacobbe M, Griggio A, Mover S, Mufid MS, Riouak I, Tonetta S, Zaffanella E. 2019. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems, EPiC Series in Computing, vol. 61, 1–13.' mla: 'Frehse, Goran, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, vol. 61, EasyChair, 2019, pp. 1–13, doi:10.29007/rjwn.' short: G. Frehse, A. Abate, D. Adzkiya, A. Becchi, L. Bu, A. Cimatti, M. Giacobbe, A. Griggio, S. Mover, M.S. Mufid, I. Riouak, S. Tonetta, E. Zaffanella, in:, G. Frehse, M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, EasyChair, 2019, pp. 1–13. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2022-03-18T12:29:23Z date_published: 2019-05-25T00:00:00Z date_updated: 2022-05-17T07:09:47Z day: '25' ddc: - '000' department: - _id: ToHe doi: 10.29007/rjwn editor: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff file: - access_level: open_access checksum: 4b92e333db7b4e2349501a804dfede69 content_type: application/pdf creator: dernst date_created: 2022-05-17T06:55:49Z date_updated: 2022-05-17T06:55:49Z file_id: '11391' file_name: 2019_EPiCs_Frehse.pdf file_size: 346415 relation: main_file success: 1 file_date_updated: 2022-05-17T06:55:49Z has_accepted_license: '1' intvolume: ' 61' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1-13 publication: ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems publication_identifier: issn: - 2398-7340 publication_status: published publisher: EasyChair quality_controlled: '1' scopus_import: '1' status: public title: 'ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '11061' abstract: - lang: eng text: Many adult tissues contain postmitotic cells as old as the host organism. The only organelle that does not turn over in these cells is the nucleus, and its maintenance represents a formidable challenge, as it harbors regulatory proteins that persist throughout adulthood. Here we developed strategies to visualize two classes of such long-lived proteins, histones and nucleoporins, to understand the function of protein longevity in nuclear maintenance. Genome-wide mapping of histones revealed specific enrichment of long-lived variants at silent gene loci. Interestingly, nuclear pores are maintained by piecemeal replacement of subunits, resulting in mosaic complexes composed of polypeptides with vastly different ages. In contrast, nondividing quiescent cells remove old nuclear pores in an ESCRT-dependent manner. Our findings reveal distinct molecular strategies of nuclear maintenance, linking lifelong protein persistence to gene regulation and nuclear integrity. article_processing_charge: No article_type: original author: - first_name: Brandon H. full_name: Toyama, Brandon H. last_name: Toyama - first_name: Rafael full_name: Arrojo e Drigo, Rafael last_name: Arrojo e Drigo - first_name: Varda full_name: Lev-Ram, Varda last_name: Lev-Ram - first_name: Ranjan full_name: Ramachandra, Ranjan last_name: Ramachandra - first_name: Thomas J. full_name: Deerinck, Thomas J. last_name: Deerinck - first_name: Claude full_name: Lechene, Claude last_name: Lechene - first_name: Mark H. full_name: Ellisman, Mark H. last_name: Ellisman - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: Toyama BH, Arrojo e Drigo R, Lev-Ram V, et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. 2019;218(2):433-444. doi:10.1083/jcb.201809123 apa: Toyama, B. H., Arrojo e Drigo, R., Lev-Ram, V., Ramachandra, R., Deerinck, T. J., Lechene, C., … Hetzer, M. (2019). Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201809123 chicago: Toyama, Brandon H., Rafael Arrojo e Drigo, Varda Lev-Ram, Ranjan Ramachandra, Thomas J. Deerinck, Claude Lechene, Mark H. Ellisman, and Martin Hetzer. “Visualization of Long-Lived Proteins Reveals Age Mosaicism within Nuclei of Postmitotic Cells.” Journal of Cell Biology. Rockefeller University Press, 2019. https://doi.org/10.1083/jcb.201809123. ieee: B. H. Toyama et al., “Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells,” Journal of Cell Biology, vol. 218, no. 2. Rockefeller University Press, pp. 433–444, 2019. ista: Toyama BH, Arrojo e Drigo R, Lev-Ram V, Ramachandra R, Deerinck TJ, Lechene C, Ellisman MH, Hetzer M. 2019. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. 218(2), 433–444. mla: Toyama, Brandon H., et al. “Visualization of Long-Lived Proteins Reveals Age Mosaicism within Nuclei of Postmitotic Cells.” Journal of Cell Biology, vol. 218, no. 2, Rockefeller University Press, 2019, pp. 433–44, doi:10.1083/jcb.201809123. short: B.H. Toyama, R. Arrojo e Drigo, V. Lev-Ram, R. Ramachandra, T.J. Deerinck, C. Lechene, M.H. Ellisman, M. Hetzer, Journal of Cell Biology 218 (2019) 433–444. date_created: 2022-04-07T07:45:11Z date_published: 2019-02-04T00:00:00Z date_updated: 2022-07-18T08:31:52Z day: '04' ddc: - '570' doi: 10.1083/jcb.201809123 extern: '1' external_id: pmid: - '30552100' file: - access_level: open_access checksum: 7964ebbf833b0b35f9fba840eea9531d content_type: application/pdf creator: dernst date_created: 2022-04-08T08:26:32Z date_updated: 2022-04-08T08:26:32Z file_id: '11139' file_name: 2019_JCB_Toyama.pdf file_size: 2503838 relation: main_file success: 1 file_date_updated: 2022-04-08T08:26:32Z has_accepted_license: '1' intvolume: ' 218' issue: '2' keyword: - Cell Biology language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: 433-444 pmid: 1 publication: Journal of Cell Biology publication_identifier: eissn: - 1540-8140 issn: - 0021-9525 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 218 year: '2019' ... --- _id: '11062' abstract: - lang: eng text: Most neurons are not replaced during an animal’s lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using 15N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization. article_processing_charge: No article_type: original author: - first_name: Rafael full_name: Arrojo e Drigo, Rafael last_name: Arrojo e Drigo - first_name: Varda full_name: Lev-Ram, Varda last_name: Lev-Ram - first_name: Swati full_name: Tyagi, Swati last_name: Tyagi - first_name: Ranjan full_name: Ramachandra, Ranjan last_name: Ramachandra - first_name: Thomas full_name: Deerinck, Thomas last_name: Deerinck - first_name: Eric full_name: Bushong, Eric last_name: Bushong - first_name: Sebastien full_name: Phan, Sebastien last_name: Phan - first_name: Victoria full_name: Orphan, Victoria last_name: Orphan - first_name: Claude full_name: Lechene, Claude last_name: Lechene - first_name: Mark H. full_name: Ellisman, Mark H. last_name: Ellisman - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: Arrojo e Drigo R, Lev-Ram V, Tyagi S, et al. Age mosaicism across multiple scales in adult tissues. Cell Metabolism. 2019;30(2):343-351.e3. doi:10.1016/j.cmet.2019.05.010 apa: Arrojo e Drigo, R., Lev-Ram, V., Tyagi, S., Ramachandra, R., Deerinck, T., Bushong, E., … Hetzer, M. (2019). Age mosaicism across multiple scales in adult tissues. Cell Metabolism. Elsevier. https://doi.org/10.1016/j.cmet.2019.05.010 chicago: Arrojo e Drigo, Rafael, Varda Lev-Ram, Swati Tyagi, Ranjan Ramachandra, Thomas Deerinck, Eric Bushong, Sebastien Phan, et al. “Age Mosaicism across Multiple Scales in Adult Tissues.” Cell Metabolism. Elsevier, 2019. https://doi.org/10.1016/j.cmet.2019.05.010. ieee: R. Arrojo e Drigo et al., “Age mosaicism across multiple scales in adult tissues,” Cell Metabolism, vol. 30, no. 2. Elsevier, p. 343–351.e3, 2019. ista: Arrojo e Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer M. 2019. Age mosaicism across multiple scales in adult tissues. Cell Metabolism. 30(2), 343–351.e3. mla: Arrojo e Drigo, Rafael, et al. “Age Mosaicism across Multiple Scales in Adult Tissues.” Cell Metabolism, vol. 30, no. 2, Elsevier, 2019, p. 343–351.e3, doi:10.1016/j.cmet.2019.05.010. short: R. Arrojo e Drigo, V. Lev-Ram, S. Tyagi, R. Ramachandra, T. Deerinck, E. Bushong, S. Phan, V. Orphan, C. Lechene, M.H. Ellisman, M. Hetzer, Cell Metabolism 30 (2019) 343–351.e3. date_created: 2022-04-07T07:45:21Z date_published: 2019-08-06T00:00:00Z date_updated: 2022-07-18T08:32:30Z day: '06' doi: 10.1016/j.cmet.2019.05.010 extern: '1' external_id: pmid: - '31178361' intvolume: ' 30' issue: '2' keyword: - Cell Biology - Molecular Biology - Physiology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cmet.2019.05.010 month: '08' oa: 1 oa_version: Published Version page: 343-351.e3 pmid: 1 publication: Cell Metabolism publication_identifier: issn: - 1550-4131 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Age mosaicism across multiple scales in adult tissues type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 30 year: '2019' ... --- _id: '11059' abstract: - lang: eng text: The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing. article_processing_charge: No article_type: review author: - first_name: Abigail full_name: Buchwalter, Abigail last_name: Buchwalter - first_name: Jeanae M. full_name: Kaneshiro, Jeanae M. last_name: Kaneshiro - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: 'Buchwalter A, Kaneshiro JM, Hetzer M. Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. 2019;20(1):39-50. doi:10.1038/s41576-018-0063-5' apa: 'Buchwalter, A., Kaneshiro, J. M., & Hetzer, M. (2019). Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. Springer Nature. https://doi.org/10.1038/s41576-018-0063-5' chicago: 'Buchwalter, Abigail, Jeanae M. Kaneshiro, and Martin Hetzer. “Coaching from the Sidelines: The Nuclear Periphery in Genome Regulation.” Nature Reviews Genetics. Springer Nature, 2019. https://doi.org/10.1038/s41576-018-0063-5.' ieee: 'A. Buchwalter, J. M. Kaneshiro, and M. Hetzer, “Coaching from the sidelines: The nuclear periphery in genome regulation,” Nature Reviews Genetics, vol. 20, no. 1. Springer Nature, pp. 39–50, 2019.' ista: 'Buchwalter A, Kaneshiro JM, Hetzer M. 2019. Coaching from the sidelines: The nuclear periphery in genome regulation. Nature Reviews Genetics. 20(1), 39–50.' mla: 'Buchwalter, Abigail, et al. “Coaching from the Sidelines: The Nuclear Periphery in Genome Regulation.” Nature Reviews Genetics, vol. 20, no. 1, Springer Nature, 2019, pp. 39–50, doi:10.1038/s41576-018-0063-5.' short: A. Buchwalter, J.M. Kaneshiro, M. Hetzer, Nature Reviews Genetics 20 (2019) 39–50. date_created: 2022-04-07T07:44:45Z date_published: 2019-01-01T00:00:00Z date_updated: 2022-07-18T08:31:42Z day: '01' doi: 10.1038/s41576-018-0063-5 extern: '1' external_id: pmid: - '30356165' intvolume: ' 20' issue: '1' keyword: - Genetics (clinical) - Genetics - Molecular Biology language: - iso: eng month: '01' oa_version: None page: 39-50 pmid: 1 publication: Nature Reviews Genetics publication_identifier: eissn: - 1471-0064 issn: - 1471-0056 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Coaching from the sidelines: The nuclear periphery in genome regulation' type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 20 year: '2019' ... --- _id: '11499' abstract: - lang: eng text: Deep optical spectroscopic surveys of galaxies provide a unique opportunity to investigate rest-frame ultra-violet (UV) emission line properties of galaxies at z ∼ 2 − 4.5. Here we combine VLT/MUSE Guaranteed Time Observations of the Hubble Deep Field South, Ultra Deep Field, COSMOS, and several quasar fields with other publicly available data from VLT/VIMOS and VLT/FORS2 to construct a catalogue of He II λ1640 emitters at z ≳ 2. The deepest areas of our MUSE pointings reach a 3σ line flux limit of 3.1 × 10−19 erg s−1 cm−2. After discarding broad-line active galactic nuclei, we find 13 He II λ1640 detections from MUSE with a median MUV = −20.1 and 21 tentative He II λ1640 detections from other public surveys. Excluding Lyα, all except two galaxies in our sample show at least one other rest-UV emission line, with C III] λ1907, λ1909 being the most prominent. We use multi-wavelength data available in the Hubble legacy fields to derive basic galaxy properties of our sample through spectral energy distribution fitting techniques. Taking advantage of the high-quality spectra obtained by MUSE (∼10 − 30 h of exposure time per pointing), we use photo-ionisation models to study the rest-UV emission line diagnostics of the He II λ1640 emitters. Line ratios of our sample can be reproduced by moderately sub-solar photo-ionisation models, however, we find that including effects of binary stars lead to degeneracies in most free parameters. Even after considering extra ionising photons produced by extreme sub-solar metallicity binary stellar models, photo-ionisation models are unable to reproduce rest-frame He II λ1640 equivalent widths (∼0.2 − 10 Å), thus additional mechanisms are necessary in models to match the observed He II λ1640 properties. acknowledgement: 'The authors wish to thank the referee for constructive comments that improved the paper substantially. We thank the BPASS team for making the stellar population models available. We thank Elizabeth Stanway, Claus Leitherer, Daniel Schaerer, Jorick Vink, and Nell Byler for insightful discussions. We thank the Lorentz Centre and the scientific organizers of the Characterizing galaxies with spectroscopy with a view for JWST workshop held at the Lorentz Centre in 2017 October, which promoted useful discussions in the wider community. TN, JB, and RB acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) top grant TOP1.16.057. AF acknowledges support from the ERC via an Advanced Grant under grant agreement no. 339659-MUSICOS. JB acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003, and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). JR acknowledges support from the ERC Starting grant 336736 (CALENDS). This research made use of astropy (http://www.astropy.org) a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018) and pandas (McKinney 2010). Figures were generated using matplotlib (Hunter 2007) and seaborn (https://seaborn.pydata.org). Facilities: VLT (MUSE).' article_number: A89 article_processing_charge: No article_type: original author: - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Leindert full_name: Boogaard, Leindert last_name: Boogaard - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Sebastiano full_name: Cantalupo, Sebastiano last_name: Cantalupo - first_name: Anna full_name: Feltre, Anna last_name: Feltre - first_name: Wolfram full_name: Kollatschny, Wolfram last_name: Kollatschny - first_name: Raffaella Anna full_name: Marino, Raffaella Anna last_name: Marino - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Mieke full_name: Paalvast, Mieke last_name: Paalvast - first_name: Johan full_name: Richard, Johan last_name: Richard - first_name: Anne full_name: Verhamme, Anne last_name: Verhamme citation: ama: Nanayakkara T, Brinchmann J, Boogaard L, et al. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 2019;648. doi:10.1051/0004-6361/201834565 apa: Nanayakkara, T., Brinchmann, J., Boogaard, L., Bouwens, R., Cantalupo, S., Feltre, A., … Verhamme, A. (2019). Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834565 chicago: Nanayakkara, Themiya, Jarle Brinchmann, Leindert Boogaard, Rychard Bouwens, Sebastiano Cantalupo, Anna Feltre, Wolfram Kollatschny, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834565. ieee: T. Nanayakkara et al., “Exploring He II λ1640 emission line properties at z ∼2−4,” Astronomy & Astrophysics, vol. 648. EDP Sciences, 2019. ista: Nanayakkara T, Brinchmann J, Boogaard L, Bouwens R, Cantalupo S, Feltre A, Kollatschny W, Marino RA, Maseda M, Matthee JJ, Paalvast M, Richard J, Verhamme A. 2019. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 648, A89. mla: Nanayakkara, Themiya, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics, vol. 648, A89, EDP Sciences, 2019, doi:10.1051/0004-6361/201834565. short: T. Nanayakkara, J. Brinchmann, L. Boogaard, R. Bouwens, S. Cantalupo, A. Feltre, W. Kollatschny, R.A. Marino, M. Maseda, J.J. Matthee, M. Paalvast, J. Richard, A. Verhamme, Astronomy & Astrophysics 648 (2019). date_created: 2022-07-06T09:07:06Z date_published: 2019-04-16T00:00:00Z date_updated: 2022-07-19T09:36:08Z day: '16' doi: 10.1051/0004-6361/201834565 extern: '1' external_id: arxiv: - '1902.05960' intvolume: ' 648' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: ISM / galaxies: star formation / galaxies: evolution / galaxies: high-redshift' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.05960 month: '04' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1051/0004-6361/201834565e scopus_import: '1' status: public title: Exploring He II λ1640 emission line properties at z ∼2−4 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 648 year: '2019' ... --- _id: '11505' abstract: - lang: eng text: "Contact. This paper presents the results obtained with the Multi-Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope on the faint end of the Lyman-alpha luminosity function (LF) based on deep observations of four lensing clusters. The goal of our project is to set strong constraints on the relative contribution of the Lyman-alpha emitter (LAE) population to cosmic reionization.\r\n\r\nAims. The precise aim of the present study is to further constrain the abundance of LAEs by taking advantage of the magnification provided by lensing clusters to build a blindly selected sample of galaxies which is less biased than current blank field samples in redshift and luminosity. By construction, this sample of LAEs is complementary to those built from deep blank fields, whether observed by MUSE or by other facilities, and makes it possible to determine the shape of the LF at fainter levels, as well as its evolution with redshift.\r\n\r\nMethods. We selected a sample of 156 LAEs with redshifts between 2.9 ≤ z ≤ 6.7 and magnification-corrected luminosities in the range 39 ≲ log LLyα [erg s−1] ≲43. To properly take into account the individual differences in detection conditions between the LAEs when computing the LF, including lensing configurations, and spatial and spectral morphologies, the non-parametric 1/Vmax method was adopted. The price to pay to benefit from magnification is a reduction of the effective volume of the survey, together with a more complex analysis procedure to properly determine the effective volume Vmax for each galaxy. In this paper we present a complete procedure for the determination of the LF based on IFU detections in lensing clusters. This procedure, including some new methods for masking, effective volume integration and (individual) completeness determinations, has been fully automated when possible, and it can be easily generalized to the analysis of IFU observations in blank fields.\r\n\r\nResults. As a result of this analysis, the Lyman-alpha LF has been obtained in four different redshift bins: 2.9 <  z <  6, 7, 2.9 <  z <  4.0, 4.0 <  z <  5.0, and 5.0 <  z <  6.7 with constraints down to log LLyα = 40.5. From our data only, no significant evolution of LF mean slope can be found. When performing a Schechter analysis also including data from the literature to complete the present sample towards the brightest luminosities, a steep faint end slope was measured varying from α = −1.69−0.08+0.08 to α = −1.87−0.12+0.12 between the lowest and the highest redshift bins.\r\n\r\nConclusions. The contribution of the LAE population to the star formation rate density at z ∼ 6 is ≲50% depending on the luminosity limit considered, which is of the same order as the Lyman-break galaxy (LBG) contribution. The evolution of the LAE contribution with redshift depends on the assumed escape fraction of Lyman-alpha photons, and appears to slightly increase with increasing redshift when this fraction is conservatively set to one. Depending on the intersection between the LAE/LBG populations, the contribution of the observed galaxies to the ionizing flux may suffice to keep the universe ionized at z ∼ 6." acknowledgement: We thank the anonymous referee for their critical review and useful suggestions. This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government programme managed by the ANR. Partially funded by the ERC starting grant CALENDS (JR, VP, BC, JM), the Agence Nationale de la recherche bearing the reference ANR-13-BS05-0010-02 (FOGHAR), and the “Programme National de Cosmologie and Galaxies” (PNCG) of CNRS/INSU, France. GdV, RP, JR, GM, JM, BC, and VP also acknowledge support by the Programa de Cooperacion Cientifica – ECOS SUD Program C16U02. NL acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 669253), ABD acknowledges support from the ERC advanced grant “Cosmic Gas”. LW acknowledges support by the Competitive Fund of the Leibniz Association through grant SAW-2015-AIP-2, and TG acknowledges support from the European Research Council under grant agreement ERC-stg-757258 (TRIPLE).. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 060.A-9345, 094.A-0115, 095.A-0181, 096.A-0710, 097.A0269, 100.A-0249, and 294.A-5032. Also based on observations obtained with the NASA/ESA Hubble Space Telescope, retrieved from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). All plots in this paper were created using Matplotlib (Hunter 2007). article_number: A3 article_processing_charge: No article_type: original author: - first_name: G. full_name: de La Vieuville, G. last_name: de La Vieuville - first_name: D. full_name: Bina, D. last_name: Bina - first_name: R. full_name: Pello, R. last_name: Pello - first_name: G. full_name: Mahler, G. last_name: Mahler - first_name: J. full_name: Richard, J. last_name: Richard - first_name: A. B. full_name: Drake, A. B. last_name: Drake - first_name: E. C. full_name: Herenz, E. C. last_name: Herenz - first_name: F. E. full_name: Bauer, F. E. last_name: Bauer - first_name: B. full_name: Clément, B. last_name: Clément - first_name: D. full_name: Lagattuta, D. last_name: Lagattuta - first_name: N. full_name: Laporte, N. last_name: Laporte - first_name: J. full_name: Martinez, J. last_name: Martinez - first_name: V. full_name: Patrício, V. last_name: Patrício - first_name: L. full_name: Wisotzki, L. last_name: Wisotzki - first_name: J. full_name: Zabl, J. last_name: Zabl - first_name: R. J. full_name: Bouwens, R. J. last_name: Bouwens - first_name: T. full_name: Contini, T. last_name: Contini - first_name: T. full_name: Garel, T. last_name: Garel - first_name: B. full_name: Guiderdoni, B. last_name: Guiderdoni - first_name: R. A. full_name: Marino, R. A. last_name: Marino - first_name: M. V. full_name: Maseda, M. V. last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: J. full_name: Schaye, J. last_name: Schaye - first_name: G. full_name: Soucail, G. last_name: Soucail citation: ama: de La Vieuville G, Bina D, Pello R, et al. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 2019;628. doi:10.1051/0004-6361/201834471 apa: de La Vieuville, G., Bina, D., Pello, R., Mahler, G., Richard, J., Drake, A. B., … Soucail, G. (2019). Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834471 chicago: La Vieuville, G. de, D. Bina, R. Pello, G. Mahler, J. Richard, A. B. Drake, E. C. Herenz, et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834471. ieee: G. de La Vieuville et al., “Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE,” Astronomy & Astrophysics, vol. 628. EDP Sciences, 2019. ista: de La Vieuville G, Bina D, Pello R, Mahler G, Richard J, Drake AB, Herenz EC, Bauer FE, Clément B, Lagattuta D, Laporte N, Martinez J, Patrício V, Wisotzki L, Zabl J, Bouwens RJ, Contini T, Garel T, Guiderdoni B, Marino RA, Maseda MV, Matthee JJ, Schaye J, Soucail G. 2019. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 628, A3. mla: de La Vieuville, G., et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics, vol. 628, A3, EDP Sciences, 2019, doi:10.1051/0004-6361/201834471. short: G. de La Vieuville, D. Bina, R. Pello, G. Mahler, J. Richard, A.B. Drake, E.C. Herenz, F.E. Bauer, B. Clément, D. Lagattuta, N. Laporte, J. Martinez, V. Patrício, L. Wisotzki, J. Zabl, R.J. Bouwens, T. Contini, T. Garel, B. Guiderdoni, R.A. Marino, M.V. Maseda, J.J. Matthee, J. Schaye, G. Soucail, Astronomy & Astrophysics 628 (2019). date_created: 2022-07-06T10:09:36Z date_published: 2019-07-25T00:00:00Z date_updated: 2022-07-19T09:36:31Z day: '25' doi: 10.1051/0004-6361/201834471 extern: '1' external_id: arxiv: - '1905.13696' intvolume: ' 628' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'gravitational lensing: strong / galaxies: high-redshift / dark ages' - reionization - 'first stars / galaxies: clusters: general / galaxies: luminosity function' - mass function language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.13696 month: '07' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 628 year: '2019' ... --- _id: '11507' abstract: - lang: eng text: 'Lyman-α (Lyα) is intrinsically the brightest line emitted from active galaxies. While it originates from many physical processes, for star-forming galaxies the intrinsic Lyα luminosity is a direct tracer of the Lyman-continuum (LyC) radiation produced by the most massive O- and early-type B-stars (M⋆ ≳ 10 M⊙) with lifetimes of a few Myrs. As such, Lyα luminosity should be an excellent instantaneous star formation rate (SFR) indicator. However, its resonant nature and susceptibility to dust as a rest-frame UV photon makes Lyα very hard to interpret due to the uncertain Lyα escape fraction, fesc, Lyα. Here we explore results from the CAlibrating LYMan-α with Hα (CALYMHA) survey at z = 2.2, follow-up of Lyα emitters (LAEs) at z = 2.2 − 2.6 and a z ∼ 0−0.3 compilation of LAEs to directly measure fesc, Lyα with Hα. We derive a simple empirical relation that robustly retrieves fesc, Lyα as a function of Lyα rest-frame EW (EW0): fesc,Lyα = 0.0048 EW0[Å] ± 0.05 and we show that it constrains a well-defined anti-correlation between ionisation efficiency (ξion) and dust extinction in LAEs. Observed Lyα luminosities and EW0 are easy measurable quantities at high redshift, thus making our relation a practical tool to estimate intrinsic Lyα and LyC luminosities under well controlled and simple assumptions. Our results allow observed Lyα luminosities to be used to compute SFRs for LAEs at z ∼ 0−2.6 within ±0.2 dex of the Hα dust corrected SFRs. We apply our empirical SFR(Lyα,EW0) calibration to several sources at z ≥ 2.6 to find that star-forming LAEs have SFRs typically ranging from 0.1 to 20 M⊙ yr−1 and that our calibration might be even applicable for the most luminous LAEs within the epoch of re-ionisation. Our results imply high ionisation efficiencies (log10[ξion/Hz erg−1] = 25.4−25.6) and low dust content in LAEs across cosmic time, and will be easily tested with future observations with JWST which can obtain Hα and Hβ measurements for high-redshift LAEs.' acknowledgement: We thank the anonymous referees for multiple comments and suggestions which have improved the manuscript. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We have benefited greatly from the publicly available programming language PYTHON, including the NUMPY & SCIPY (Van Der Walt et al. 2011; Jones et al. 2001), MATPLOTLIB (Hunter 2007) and ASTROPY (Astropy Collaboration 2013) packages, and the TOPCAT analysis program (Taylor 2013). The results and samples of LAEs used for this paper are publicly available (see e.g. Sobral et al. 2017, 2018a) and we also provide the toy model used as a PYTHON script. article_number: A157 article_processing_charge: No article_type: original author: - first_name: David full_name: Sobral, David last_name: Sobral - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: 'Sobral D, Matthee JJ. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 2019;623. doi:10.1051/0004-6361/201833075' apa: 'Sobral, D., & Matthee, J. J. (2019). Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201833075' chicago: 'Sobral, David, and Jorryt J Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201833075.' ieee: 'D. Sobral and J. J. Matthee, “Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator,” Astronomy & Astrophysics, vol. 623. EDP Sciences, 2019.' ista: 'Sobral D, Matthee JJ. 2019. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 623, A157.' mla: 'Sobral, David, and Jorryt J. Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics, vol. 623, A157, EDP Sciences, 2019, doi:10.1051/0004-6361/201833075.' short: D. Sobral, J.J. Matthee, Astronomy & Astrophysics 623 (2019). date_created: 2022-07-06T11:08:16Z date_published: 2019-03-26T00:00:00Z date_updated: 2022-07-19T09:37:20Z day: '26' doi: 10.1051/0004-6361/201833075 extern: '1' external_id: arxiv: - '1803.08923' intvolume: ' 623' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: high-redshift / galaxies: star formation / galaxies: statistics / galaxies: evolution / galaxies: formation / galaxies: ISM' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.08923 month: '03' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: 'Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 623 year: '2019' ... --- _id: '11514' abstract: - lang: eng text: We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) HUDF Survey and multiwavelength data to uniquely associate all 16 line emitters, detected in the ALMA data without preselection, with rotational transitions of carbon monoxide (CO). We identify 10 as CO(2–1) at 1 < z < 2, 5 as CO(3–2) at 2 < z < 3, and 1 as CO(4–3) at z = 3.6. Using the MUSE data as a prior, we identify two additional CO(2–1) emitters, increasing the total sample size to 18. We infer metallicities consistent with (super-)solar for the CO-detected galaxies at z ≤ 1.5, motivating our choice of a Galactic conversion factor between CO luminosity and molecular gas mass for these galaxies. Using deep Chandra imaging of the HUDF, we determine an X-ray AGN fraction of 20% and 60% among the CO emitters at z ∼ 1.4 and z ∼ 2.6, respectively. Being a CO-flux-limited survey, ASPECS-LP detects molecular gas in galaxies on, above, and below the main sequence (MS) at z ∼ 1.4. For stellar masses ≥1010 (1010.5) ${M}_{\odot }$, we detect about 40% (50%) of all galaxies in the HUDF at 1 < z < 2 (2 < z < 3). The combination of ALMA and MUSE integral-field spectroscopy thus enables an unprecedented view of MS galaxies during the peak of galaxy formation. acknowledgement: "We are grateful to the referee for providing a constructive report. L.A.B. wants to thank Madusha L.P. Gunawardhana for her help with platefit. Based on observations collected at the European Southern Observatory under ESO programme(s): 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00324.L. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.\r\n\r\n\"Este trabajo contó con el apoyo de CONICYT+Programa de Astronomía+ Fondo CHINA-CONICYT\" J.G-L. acknowledges partial support from ALMA-CONICYT project 31160033. F.E.B. acknowledges support from CONICYT grant Basal AFB-170002 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB). J.B. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003., and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). T.D-S. acknowledges support from ALMA-CONYCIT project 31130005 and FONDECYT project 1151239. J.H. acknowledges support of the VIDI research programme with project number 639.042.611, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). D.R. acknowledges support from the National Science Foundation under grant No. AST-1614213. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334) and STFC (ST/P000541/1)\r\n\r\nWork on Gnuastro has been funded by the Japanese MEXT scholarship and its Grant-in-Aid for Scientific Research (21244012, 24253003), the ERC advanced grant 339659-MUSICOS, European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN, and from the Spanish MINECO under grant No. AYA2016-76219-P." article_number: '140' article_processing_charge: No article_type: original author: - first_name: Leindert A. full_name: Boogaard, Leindert A. last_name: Boogaard - first_name: Roberto full_name: Decarli, Roberto last_name: Decarli - first_name: Jorge full_name: González-López, Jorge last_name: González-López - first_name: Paul full_name: van der Werf, Paul last_name: van der Werf - first_name: Fabian full_name: Walter, Fabian last_name: Walter - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Manuel full_name: Aravena, Manuel last_name: Aravena - first_name: Chris full_name: Carilli, Chris last_name: Carilli - first_name: Franz Erik full_name: Bauer, Franz Erik last_name: Bauer - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Thierry full_name: Contini, Thierry last_name: Contini - first_name: Pierre full_name: Cox, Pierre last_name: Cox - first_name: Elisabete full_name: da Cunha, Elisabete last_name: da Cunha - first_name: Emanuele full_name: Daddi, Emanuele last_name: Daddi - first_name: Tanio full_name: Díaz-Santos, Tanio last_name: Díaz-Santos - first_name: Jacqueline full_name: Hodge, Jacqueline last_name: Hodge - first_name: Hanae full_name: Inami, Hanae last_name: Inami - first_name: Rob full_name: Ivison, Rob last_name: Ivison - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Pascal full_name: Oesch, Pascal last_name: Oesch - first_name: Gergö full_name: Popping, Gergö last_name: Popping - first_name: Dominik full_name: Riechers, Dominik last_name: Riechers - first_name: Joop full_name: Schaye, Joop last_name: Schaye - first_name: Sander full_name: Schouws, Sander last_name: Schouws - first_name: Ian full_name: Smail, Ian last_name: Smail - first_name: Axel full_name: Weiss, Axel last_name: Weiss - first_name: Lutz full_name: Wisotzki, Lutz last_name: Wisotzki - first_name: Roland full_name: Bacon, Roland last_name: Bacon - first_name: Paulo C. full_name: Cortes, Paulo C. last_name: Cortes - first_name: Hans-Walter full_name: Rix, Hans-Walter last_name: Rix - first_name: Rachel S. full_name: Somerville, Rachel S. last_name: Somerville - first_name: Mark full_name: Swinbank, Mark last_name: Swinbank - first_name: Jeff full_name: Wagg, Jeff last_name: Wagg citation: ama: 'Boogaard LA, Decarli R, González-López J, et al. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 2019;882(2). doi:10.3847/1538-4357/ab3102' apa: 'Boogaard, L. A., Decarli, R., González-López, J., van der Werf, P., Walter, F., Bouwens, R., … Wagg, J. (2019). The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab3102' chicago: 'Boogaard, Leindert A., Roberto Decarli, Jorge González-López, Paul van der Werf, Fabian Walter, Rychard Bouwens, Manuel Aravena, et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab3102.' ieee: 'L. A. Boogaard et al., “The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy,” The Astrophysical Journal, vol. 882, no. 2. IOP Publishing, 2019.' ista: 'Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.' mla: 'Boogaard, Leindert A., et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal, vol. 882, no. 2, 140, IOP Publishing, 2019, doi:10.3847/1538-4357/ab3102.' short: L.A. Boogaard, R. Decarli, J. González-López, P. van der Werf, F. Walter, R. Bouwens, M. Aravena, C. Carilli, F.E. Bauer, J. Brinchmann, T. Contini, P. Cox, E. da Cunha, E. Daddi, T. Díaz-Santos, J. Hodge, H. Inami, R. Ivison, M. Maseda, J.J. Matthee, P. Oesch, G. Popping, D. Riechers, J. Schaye, S. Schouws, I. Smail, A. Weiss, L. Wisotzki, R. Bacon, P.C. Cortes, H.-W. Rix, R.S. Somerville, M. Swinbank, J. Wagg, The Astrophysical Journal 882 (2019). date_created: 2022-07-06T13:31:35Z date_published: 2019-09-11T00:00:00Z date_updated: 2022-07-19T09:50:55Z day: '11' doi: 10.3847/1538-4357/ab3102 extern: '1' external_id: arxiv: - '1903.09167' intvolume: ' 882' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.09167 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 882 year: '2019' ...