TY - GEN
AB - Summary of orthologous groups (OGs) for 227 genomes of genus Chlamydia. (CSV 362 kb)
AU - Sigalova, Olga M.
AU - Chaplin, Andrei V.
AU - Bochkareva, Olga
AU - Shelyakin, Pavel V.
AU - Filaretov, Vsevolod A.
AU - Akkuratov, Evgeny E.
AU - Burskaia, Valentina
AU - Gelfand, Mikhail S.
ID - 9899
TI - Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction
ER -
TY - GEN
AB - Pan-genome statistics by species. (CSV 3 kb)
AU - Sigalova, Olga M.
AU - Chaplin, Andrei V.
AU - Bochkareva, Olga
AU - Shelyakin, Pavel V.
AU - Filaretov, Vsevolod A.
AU - Akkuratov, Evgeny E.
AU - Burskaia, Valentina
AU - Gelfand, Mikhail S.
ID - 9900
TI - Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction
ER -
TY - GEN
AB - Summary of the analysed genomes. (CSV 24 kb)
AU - Sigalova, Olga M.
AU - Chaplin, Andrei V.
AU - Bochkareva, Olga
AU - Shelyakin, Pavel V.
AU - Filaretov, Vsevolod A.
AU - Akkuratov, Evgeny E.
AU - Burskaia, Valentina
AU - Gelfand, Mikhail S.
ID - 9896
TI - Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction
ER -
TY - JOUR
AB - Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.
AU - Kim, M. Yvonne
AU - Ono, Akemi
AU - Scholten, Stefan
AU - Kinoshita, Tetsu
AU - ZILBERMAN, Daniel
AU - Okamoto, Takashi
AU - Fischer, Robert L.
ID - 9460
IS - 19
JF - Proceedings of the National Academy of Sciences
KW - Multidisciplinary
SN - 0027-8424
TI - DNA demethylation by ROS1a in rice vegetative cells promotes methylation in sperm
VL - 116
ER -
TY - JOUR
AB - Background
DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation.
Results
Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue.
Conclusions
Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
AU - Harris, Keith D.
AU - Lloyd, James P. B.
AU - Domb, Katherine
AU - ZILBERMAN, Daniel
AU - Zemach, Assaf
ID - 9530
JF - Epigenetics and Chromatin
TI - DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development
VL - 12
ER -
TY - JOUR
AB - Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom1, and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields—known as Einstein–Podolsky–Rosen (EPR) states—are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication2. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers3, and at microwave frequencies Josephson circuits can serve as a nonlinear medium4,5,6. An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise7. Such generalized quantum correlations of separable states are important for quantum-enhanced detection8 and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state9. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar on-chip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons.
AU - Barzanjeh, Shabir
AU - Redchenko, Elena
AU - Peruzzo, Matilda
AU - Wulf, Matthias
AU - Lewis, Dylan
AU - Arnold, Georg M
AU - Fink, Johannes M
ID - 6609
JF - Nature
TI - Stationary entangled radiation from micromechanical motion
VL - 570
ER -
TY - JOUR
AB - Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.
AU - Kalaee, Mahmoud
AU - Mirhosseini, Mohammad
AU - Dieterle, Paul B.
AU - Peruzzo, Matilda
AU - Fink, Johannes M
AU - Painter, Oskar
ID - 6053
IS - 4
JF - Nature Nanotechnology
SN - 1748-3387
TI - Quantum electromechanics of a hypersonic crystal
VL - 14
ER -
TY - CONF
AB - In this work, we consider the almost-sure termination problem for probabilistic programs that asks whether a
given probabilistic program terminates with probability 1. Scalable approaches for program analysis often
rely on modularity as their theoretical basis. In non-probabilistic programs, the classical variant rule (V-rule)
of Floyd-Hoare logic provides the foundation for modular analysis. Extension of this rule to almost-sure
termination of probabilistic programs is quite tricky, and a probabilistic variant was proposed in [16]. While the
proposed probabilistic variant cautiously addresses the key issue of integrability, we show that the proposed
modular rule is still not sound for almost-sure termination of probabilistic programs.
Besides establishing unsoundness of the previous rule, our contributions are as follows: First, we present a
sound modular rule for almost-sure termination of probabilistic programs. Our approach is based on a novel
notion of descent supermartingales. Second, for algorithmic approaches, we consider descent supermartingales
that are linear and show that they can be synthesized in polynomial time. Finally, we present experimental
results on a variety of benchmarks and several natural examples that model various types of nested while
loops in probabilistic programs and demonstrate that our approach is able to efficiently prove their almost-sure
termination property
AU - Huang, Mingzhang
AU - Fu, Hongfei
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
ID - 6780
T2 - Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications
TI - Modular verification for almost-sure termination of probabilistic programs
VL - 3
ER -
TY - CONF
AB - We consider the problem of expected cost analysis over nondeterministic probabilistic programs,
which aims at automated methods for analyzing the resource-usage of such programs.
Previous approaches for this problem could only handle nonnegative bounded costs.
However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols,
both positive and negative costs are necessary and the costs are unbounded as well.
In this work, we present a sound and efficient approach to obtain polynomial bounds on the
expected accumulated cost of nondeterministic probabilistic programs.
Our approach can handle (a) general positive and negative costs with bounded updates in
variables; and (b) nonnegative costs with general updates to variables.
We show that several natural examples which could not be
handled by previous approaches are captured in our framework.
Moreover, our approach leads to an efficient polynomial-time algorithm, while no
previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime.
Finally, we show the effectiveness of our approach using experimental results on a variety of programs for which we efficiently synthesize tight resource-usage bounds.
AU - Wang, Peixin
AU - Fu, Hongfei
AU - Goharshady, Amir Kafshdar
AU - Chatterjee, Krishnendu
AU - Qin, Xudong
AU - Shi, Wenjun
ID - 6175
KW - Program Cost Analysis
KW - Program Termination
KW - Probabilistic Programs
KW - Martingales
T2 - PLDI 2019: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
TI - Cost analysis of nondeterministic probabilistic programs
ER -
TY - JOUR
AB -
Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, and so on. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, and so on. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in an important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect we consider is that the control flow graphs for most programs have constant treewidth.
Our main contributions are simple and implementable algorithms that support multiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing but can answer subsequent queries significantly faster as compared to the current algorithmic solutions for interprocedural dataflow analysis. We have also implemented our algorithms and evaluated their performance for performing on-demand interprocedural dataflow analysis on various domains, such as for live variable analysis and reaching definitions, on a standard benchmark set. Our experimental results align with our theoretical statements and show that after a lightweight preprocessing, on-demand queries are answered much faster than the standard existing algorithmic approaches.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Goyal, Prateesh
AU - Ibsen-Jensen, Rasmus
AU - Pavlogiannis, Andreas
ID - 7158
IS - 4
JF - ACM Transactions on Programming Languages and Systems
SN - 0164-0925
TI - Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth
VL - 41
ER -
TY - CONF
AB - In today's programmable blockchains, smart contracts are limited to being deterministic and non-probabilistic. This lack of randomness is a consequential limitation, given that a wide variety of real-world financial contracts, such as casino games and lotteries, depend entirely on randomness. As a result, several ad-hoc random number generation approaches have been developed to be used in smart contracts. These include ideas such as using an oracle or relying on the block hash. However, these approaches are manipulatable, i.e. their output can be tampered with by parties who might not be neutral, such as the owner of the oracle or the miners.We propose a novel game-theoretic approach for generating provably unmanipulatable pseudorandom numbers on the blockchain. Our approach allows smart contracts to access a trustworthy source of randomness that does not rely on potentially compromised miners or oracles, hence enabling the creation of a new generation of smart contracts that are not limited to being non-probabilistic and can be drawn from the much more general class of probabilistic programs.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Pourdamghani, Arash
ID - 6056
T2 - IEEE International Conference on Blockchain and Cryptocurrency
TI - Probabilistic smart contracts: Secure randomness on the blockchain
ER -
TY - JOUR
AB - We study the problem of developing efficient approaches for proving
worst-case bounds of non-deterministic recursive programs. Ranking functions
are sound and complete for proving termination and worst-case bounds of
nonrecursive programs. First, we apply ranking functions to recursion,
resulting in measure functions. We show that measure functions provide a sound
and complete approach to prove worst-case bounds of non-deterministic recursive
programs. Our second contribution is the synthesis of measure functions in
nonpolynomial forms. We show that non-polynomial measure functions with
logarithm and exponentiation can be synthesized through abstraction of
logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem
using linear programming. While previous methods obtain worst-case polynomial
bounds, our approach can synthesize bounds of the form $\mathcal{O}(n\log n)$
as well as $\mathcal{O}(n^r)$ where $r$ is not an integer. We present
experimental results to demonstrate that our approach can obtain efficiently
worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the
divide-and-conquer algorithm for the Closest-Pair problem, where we obtain
$\mathcal{O}(n \log n)$ worst-case bound, and (ii) Karatsuba's algorithm for
polynomial multiplication and Strassen's algorithm for matrix multiplication,
where we obtain $\mathcal{O}(n^r)$ bound such that $r$ is not an integer and
close to the best-known bounds for the respective algorithms.
AU - Chatterjee, Krishnendu
AU - Fu, Hongfei
AU - Goharshady, Amir Kafshdar
ID - 7014
IS - 4
JF - ACM Transactions on Programming Languages and Systems
TI - Non-polynomial worst-case analysis of recursive programs
VL - 41
ER -
TY - CONF
AB - In today's cryptocurrencies, Hashcash proof of work is the most commonly-adopted approach to mining. In Hashcash, when a miner decides to add a block to the chain, she has to solve the difficult computational puzzle of inverting a hash function. While Hashcash has been successfully adopted in both Bitcoin and Ethereum, it has attracted significant and harsh criticism due to its massive waste of electricity, its carbon footprint and environmental effects, and the inherent lack of usefulness in inverting a hash function. Various other mining protocols have been suggested, including proof of stake, in which a miner's chance of adding the next block is proportional to her current balance. However, such protocols lead to a higher entry cost for new miners who might not still have any stake in the cryptocurrency, and can in the worst case lead to an oligopoly, where the rich have complete control over mining. In this paper, we propose Hybrid Mining: a new mining protocol that combines solving real-world useful problems with Hashcash. Our protocol allows new miners to join the network by taking part in Hashcash mining without having to own an initial stake. It also allows nodes of the network to submit hard computational problems whose solutions are of interest in the real world, e.g.~protein folding problems. Then, miners can choose to compete in solving these problems, in lieu of Hashcash, for adding a new block. Hence, Hybrid Mining incentivizes miners to solve useful problems, such as hard computational problems arising in biology, in a distributed manner. It also gives researchers in other areas an easy-to-use tool to outsource their hard computations to the blockchain network, which has enormous computational power, by paying a reward to the miner who solves the problem for them. Moreover, our protocol provides strong security guarantees and is at least as resilient to double spending as Bitcoin.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Pourdamghani, Arash
ID - 6378
SN - 9781450359337
T2 - Proceedings of the 34th ACM Symposium on Applied Computing
TI - Hybrid Mining: Exploiting blockchain’s computational power for distributed problem solving
VL - Part F147772
ER -
TY - JOUR
AB - There is a huge gap between the speeds of modern caches and main memories, and therefore cache misses account for a considerable loss of efficiency in programs. The predominant technique to address this issue has been Data Packing: data elements that are frequently accessed within time proximity are packed into the same cache block, thereby minimizing accesses to the main memory. We consider the algorithmic problem of Data Packing on a two-level memory system. Given a reference sequence R of accesses to data elements, the task is to partition the elements into cache blocks such that the number of cache misses on R is minimized. The problem is notoriously difficult: it is NP-hard even when the cache has size 1, and is hard to approximate for any cache size larger than 4. Therefore, all existing techniques for Data Packing are based on heuristics and lack theoretical guarantees. In this work, we present the first positive theoretical results for Data Packing, along with new and stronger negative results. We consider the problem under the lens of the underlying access hypergraphs, which are hypergraphs of affinities between the data elements, where the order of an access hypergraph corresponds to the size of the affinity group. We study the problem parameterized by the treewidth of access hypergraphs, which is a standard notion in graph theory to measure the closeness of a graph to a tree. Our main results are as follows: We show there is a number q* depending on the cache parameters such that (a) if the access hypergraph of order q* has constant treewidth, then there is a linear-time algorithm for Data Packing; (b)the Data Packing problem remains NP-hard even if the access hypergraph of order q*-1 has constant treewidth. Thus, we establish a fine-grained dichotomy depending on a single parameter, namely, the highest order among access hypegraphs that have constant treewidth; and establish the optimal value q* of this parameter. Finally, we present an experimental evaluation of a prototype implementation of our algorithm. Our results demonstrate that, in practice, access hypergraphs of many commonly-used algorithms have small treewidth. We compare our approach with several state-of-the-art heuristic-based algorithms and show that our algorithm leads to significantly fewer cache-misses.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Okati, Nastaran
AU - Pavlogiannis, Andreas
ID - 6380
IS - POPL
JF - Proceedings of the ACM on Programming Languages
SN - 2475-1421
TI - Efficient parameterized algorithms for data packing
VL - 3
ER -
TY - CONF
AB - Smart contracts are programs that are stored and executed on the Blockchain and can receive, manage and transfer money (cryptocurrency units). Two important problems regarding smart contracts are formal analysis and compiler optimization. Formal analysis is extremely important, because smart contracts hold funds worth billions of dollars and their code is immutable after deployment. Hence, an undetected bug can cause significant financial losses. Compiler optimization is also crucial, because every action of a smart contract has to be executed by every node in the Blockchain network. Therefore, optimizations in compiling smart contracts can lead to significant savings in computation, time and energy.
Two classical approaches in program analysis and compiler optimization are intraprocedural and interprocedural analysis. In intraprocedural analysis, each function is analyzed separately, while interprocedural analysis considers the entire program. In both cases, the analyses are usually reduced to graph problems over the control flow graph (CFG) of the program. These graph problems are often computationally expensive. Hence, there has been ample research on exploiting structural properties of CFGs for efficient algorithms. One such well-studied property is the treewidth, which is a measure of tree-likeness of graphs. It is known that intraprocedural CFGs of structured programs have treewidth at most 6, whereas the interprocedural treewidth cannot be bounded. This result has been used as a basis for many efficient intraprocedural analyses.
In this paper, we explore the idea of exploiting the treewidth of smart contracts for formal analysis and compiler optimization. First, similar to classical programs, we show that the intraprocedural treewidth of structured Solidity and Vyper smart contracts is at most 9. Second, for global analysis, we prove that the interprocedural treewidth of structured smart contracts is bounded by 10 and, in sharp contrast with classical programs, treewidth-based algorithms can be easily applied for interprocedural analysis. Finally, we supplement our theoretical results with experiments using a tool we implemented for computing treewidth of smart contracts and show that the treewidth is much lower in practice. We use 36,764 real-world Ethereum smart contracts as benchmarks and find that they have an average treewidth of at most 3.35 for the intraprocedural case and 3.65 for the interprocedural case.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir Kafshdar
AU - Goharshady, Ehsan Kafshdar
ID - 6490
SN - 9781450359337
T2 - Proceedings of the 34th ACM Symposium on Applied Computing
TI - The treewidth of smart contracts
VL - Part F147772
ER -
TY - JOUR
AB - Polar auxin transport plays a pivotal role in plant growth and development. PIN auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis thaliana. PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.
AU - Oochi, A
AU - Hajny, Jakub
AU - Fukui, K
AU - Nakao, Y
AU - Gallei, Michelle C
AU - Quareshy, M
AU - Takahashi, K
AU - Kinoshita, T
AU - Harborough, SR
AU - Kepinski, S
AU - Kasahara, H
AU - Napier, RM
AU - Friml, Jiří
AU - Hayashi, KI
ID - 6260
IS - 2
JF - Plant Physiology
SN - 0032-0889
TI - Pinstatic acid promotes auxin transport by inhibiting PIN internalization
VL - 180
ER -
TY - THES
AB - Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving.
Nevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions.
While, previously, directions were given by the user, we introduce (1) the first method
for computing template directions from spurious counterexamples, so as to generalize and
eliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid
automata with (possibly non-linear) convex constraints on derivatives only, while for linear
ODE requires further abstraction. Specifically, we introduce (2) the conic abstractions,
which, partitioning the state space into appropriate (possibly non-uniform) cones, divide
curvy trajectories into relatively straight sections, suitable for polyhedral abstractions.
Finally, we introduce (3) space-time interpolation, which, combining interval arithmetic
and template refinement, computes appropriate (possibly non-uniform) time partitioning
and template directions along spurious trajectories, so as to eliminate them.
We obtain sound and automatic methods for the reachability analysis over dense
and unbounded time of convex hybrid automata and hybrid automata with linear ODE.
We build prototype tools and compare—favorably—our methods against the respective
state-of-the-art tools, on several benchmarks.
AU - Giacobbe, Mirco
ID - 6894
TI - Automatic time-unbounded reachability analysis of hybrid systems
ER -
TY - GEN
AB - In this paper, we present the first fully asynchronous distributed key generation (ADKG) algorithm as well as the first distributed key generation algorithm that can create keys with a dual (f,2f+1)−threshold that are necessary for scalable consensus (which so far needs a trusted dealer assumption). In order to create a DKG with a dual (f,2f+1)− threshold we first answer in the affirmative the open question posed by Cachin et al. how to create an AVSS protocol with recovery thresholds f+1