@article{6608, abstract = {We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.}, author = {Edelsbrunner, Herbert and Ölsböck, Katharina}, journal = {Computer Aided Geometric Design}, pages = {1--15}, publisher = {Elsevier}, title = {{Holes and dependences in an ordered complex}}, doi = {10.1016/j.cagd.2019.06.003}, volume = {73}, year = {2019}, } @inproceedings{6677, abstract = {The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography. We show that solving the END−OF−METERED−LINE problem is no easier than breaking the soundness of the Fiat-Shamir transformation when applied to the sumcheck protocol. In particular, if the transformed protocol is sound, then any hard problem in #P gives rise to a hard distribution in the class CLS, which is contained in PPAD. Our result opens up the possibility of sampling moderately-sized games for which it is hard to find a Nash equilibrium, by reducing the inversion of appropriately chosen one-way functions to #SAT. Our main technical contribution is a stateful incrementally verifiable procedure that, given a SAT instance over n variables, counts the number of satisfying assignments. This is accomplished via an exponential sequence of small steps, each computable in time poly(n). Incremental verifiability means that each intermediate state includes a sumcheck-based proof of its correctness, and the proof can be updated and verified in time poly(n).}, author = {Choudhuri, Arka Rai and Hubáček, Pavel and Kamath Hosdurg, Chethan and Pietrzak, Krzysztof Z and Rosen, Alon and Rothblum, Guy N.}, booktitle = {Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019}, isbn = {9781450367059}, location = {Phoenix, AZ, United States}, pages = {1103--1114}, publisher = {ACM Press}, title = {{Finding a Nash equilibrium is no easier than breaking Fiat-Shamir}}, doi = {10.1145/3313276.3316400}, year = {2019}, } @article{5986, abstract = {Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm (with 𝑂(𝑛8) being a crude bound on the run-time) to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of 𝑂(𝑛7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.}, author = {Lubiw, Anna and Masárová, Zuzana and Wagner, Uli}, issn = {1432-0444}, journal = {Discrete & Computational Geometry}, number = {4}, pages = {880--898}, publisher = {Springer Nature}, title = {{A proof of the orbit conjecture for flipping edge-labelled triangulations}}, doi = {10.1007/s00454-018-0035-8}, volume = {61}, year = {2019}, } @article{5886, abstract = {Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling.}, author = {Li, Xiang and Bighin, Giacomo and Yakaboylu, Enderalp and Lemeshko, Mikhail}, issn = {00268976}, journal = {Molecular Physics}, publisher = {Taylor and Francis}, title = {{Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon}}, doi = {10.1080/00268976.2019.1567852}, year = {2019}, } @inproceedings{6556, abstract = {Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth of the face pairing graph of any triangulation T of M. In this setting the relationship between the topology of a 3-manifold and its treewidth is of particular interest. First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable 3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M. In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the Heegaard genus and the treewidth are within a constant factor. Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for every spherical 3-manifold we exhibit a triangulation of treewidth at most two. Our results further validate the parameter of treewidth (and other related parameters such as cutwidth or congestion) to be useful for topological computing, and also shed more light on the scope of existing FPT-algorithms in the field.}, author = {Huszár, Kristóf and Spreer, Jonathan}, booktitle = {35th International Symposium on Computational Geometry}, isbn = {978-3-95977-104-7}, issn = {1868-8969}, keywords = {computational 3-manifold topology, fixed-parameter tractability, layered triangulations, structural graph theory, treewidth, cutwidth, Heegaard genus}, location = {Portland, Oregon, United States}, pages = {44:1--44:20}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{3-manifold triangulations with small treewidth}}, doi = {10.4230/LIPIcs.SoCG.2019.44}, volume = {129}, year = {2019}, }