@phdthesis{7186, abstract = {Tissue morphogenesis in developmental or physiological processes is regulated by molecular and mechanical signals. While the molecular signaling cascades are increasingly well described, the mechanical signals affecting tissue shape changes have only recently been studied in greater detail. To gain more insight into the mechanochemical and biophysical basis of an epithelial spreading process (epiboly) in early zebrafish development, we studied cell-cell junction formation and actomyosin network dynamics at the boundary between surface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly, the cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of gastrulation. It has been previously shown that an actomyosin ring residing within the YSL pulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby dragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL actomyosin ring to EVL cells; however, the nature and formation of the junctional structure mediating this process has not been well described so far. Therefore, our main aim was to determine the nature, dynamics and potential function of the EVL-YSL junction during this epithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a mechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process of TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated Zonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we could demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk cell, and ZO-1 undergoes a phase separation process that likely renders the protein responsive to flows. These flows are directed towards the junction and mediate proper tension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets incorporated into the junctional pool mediated through its direct actin-binding domain. When the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their proper mechanosensitive responses resulting in slower tissue spreading. We could further demonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin ring formation. This suggests that a mechanochemical feedback loop is at work during zebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin contractility and flows positively influence ZO-1 junctional recruitment. Finally, such a mesoscale polarization process mediated through the flow of phase-separated protein clusters might have implications for other processes such as immunological synapse formation, C. elegans zygote polarization and wound healing.}, author = {Schwayer, Cornelia}, issn = {2663-337X}, pages = {107}, publisher = {Institute of Science and Technology Austria}, title = {{Mechanosensation of tight junctions depends on ZO-1 phase separation and flow}}, doi = {10.15479/AT:ISTA:7186}, year = {2019}, } @phdthesis{6681, abstract = {The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2, we construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X). In the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space.}, author = {Zhechev, Stephan Y}, issn = {2663-337X}, pages = {104}, publisher = {Institute of Science and Technology Austria}, title = {{Algorithmic aspects of homotopy theory and embeddability}}, doi = {10.15479/AT:ISTA:6681}, year = {2019}, } @unpublished{8182, abstract = {Suppose that $n\neq p^k$ and $n\neq 2p^k$ for all $k$ and all primes $p$. We prove that for any Hausdorff compactum $X$ with a free action of the symmetric group $\mathfrak S_n$ there exists an $\mathfrak S_n$-equivariant map $X \to {\mathbb R}^n$ whose image avoids the diagonal $\{(x,x\dots,x)\in {\mathbb R}^n|x\in {\mathbb R}\}$. Previously, the special cases of this statement for certain $X$ were usually proved using the equivartiant obstruction theory. Such calculations are difficult and may become infeasible past the first (primary) obstruction. We take a different approach which allows us to prove the vanishing of all obstructions simultaneously. The essential step in the proof is classifying the possible degrees of $\mathfrak S_n$-equivariant maps from the boundary $\partial\Delta^{n-1}$ of $(n-1)$-simplex to itself. Existence of equivariant maps between spaces is important for many questions arising from discrete mathematics and geometry, such as Kneser's conjecture, the Square Peg conjecture, the Splitting Necklace problem, and the Topological Tverberg conjecture, etc. We demonstrate the utility of our result applying it to one such question, a specific instance of envy-free division problem.}, author = {Avvakumov, Sergey and Kudrya, Sergey}, booktitle = {arXiv}, publisher = {arXiv}, title = {{Vanishing of all equivariant obstructions and the mapping degree}}, year = {2019}, } @unpublished{8185, abstract = {In this paper we study envy-free division problems. The classical approach to some of such problems, used by David Gale, reduces to considering continuous maps of a simplex to itself and finding sufficient conditions when this map hits the center of the simplex. The mere continuity is not sufficient for such a conclusion, the usual assumption (for example, in the Knaster--Kuratowski--Mazurkiewicz and the Gale theorem) is a certain boundary condition. We follow Erel Segal-Halevi, Fr\'ed\'eric Meunier, and Shira Zerbib, and replace the boundary condition by another assumption, which has the economic meaning of possibility for a player to prefer an empty part in the segment partition problem. We solve the problem positively when $n$, the number of players that divide the segment, is a prime power, and we provide counterexamples for every $n$ which is not a prime power. We also provide counterexamples relevant to a wider class of fair or envy-free partition problems when $n$ is odd and not a prime power.}, author = {Avvakumov, Sergey and Karasev, Roman}, booktitle = {arXiv}, title = {{Envy-free division using mapping degree}}, doi = {10.48550/arXiv.1907.11183}, year = {2019}, } @unpublished{7524, abstract = {We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\rho$ and inverse temperature $\beta$ differs from the one of the non-interacting system by the correction term $4 \pi \rho^2 |\ln a^2 \rho|^{-1} (2 - [1 - \beta_{\mathrm{c}}/\beta]_+^2)$. Here $a$ is the scattering length of the interaction potential, $[\cdot]_+ = \max\{ 0, \cdot \}$ and $\beta_{\mathrm{c}}$ is the inverse Berezinskii--Kosterlitz--Thouless critical temperature for superfluidity. The result is valid in the dilute limit $a^2\rho \ll 1$ and if $\beta \rho \gtrsim 1$.}, author = {Deuchert, Andreas and Mayer, Simon and Seiringer, Robert}, booktitle = {arXiv:1910.03372}, pages = {61}, publisher = {ArXiv}, title = {{The free energy of the two-dimensional dilute Bose gas. I. Lower bound}}, year = {2019}, }