--- _id: '9858' article_processing_charge: No author: - first_name: Tom full_name: Schmidt, Tom last_name: Schmidt - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gordana full_name: Rasic, Gordana last_name: Rasic - first_name: Andrew full_name: Turley, Andrew last_name: Turley - first_name: Brian full_name: Montgomery, Brian last_name: Montgomery - first_name: Inaki full_name: Iturbe Ormaetxe, Inaki last_name: Iturbe Ormaetxe - first_name: Peter full_name: Cook, Peter last_name: Cook - first_name: Peter full_name: Ryan, Peter last_name: Ryan - first_name: Scott full_name: Ritchie, Scott last_name: Ritchie - first_name: Ary full_name: Hoffmann, Ary last_name: Hoffmann - first_name: Scott full_name: O’Neill, Scott last_name: O’Neill - first_name: Michael full_name: Turelli, Michael last_name: Turelli citation: ama: Schmidt T, Barton NH, Rasic G, et al. Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics. 2017. doi:10.1371/journal.pbio.2001894.s016 apa: Schmidt, T., Barton, N. H., Rasic, G., Turley, A., Montgomery, B., Iturbe Ormaetxe, I., … Turelli, M. (2017). Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics. Public Library of Science. https://doi.org/10.1371/journal.pbio.2001894.s016 chicago: Schmidt, Tom, Nicholas H Barton, Gordana Rasic, Andrew Turley, Brian Montgomery, Inaki Iturbe Ormaetxe, Peter Cook, et al. “Excel File with Data on Mosquito Densities, Wolbachia Infection Status and Housing Characteristics.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pbio.2001894.s016. ieee: T. Schmidt et al., “Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics.” Public Library of Science, 2017. ista: Schmidt T, Barton NH, Rasic G, Turley A, Montgomery B, Iturbe Ormaetxe I, Cook P, Ryan P, Ritchie S, Hoffmann A, O’Neill S, Turelli M. 2017. Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics, Public Library of Science, 10.1371/journal.pbio.2001894.s016. mla: Schmidt, Tom, et al. Excel File with Data on Mosquito Densities, Wolbachia Infection Status and Housing Characteristics. Public Library of Science, 2017, doi:10.1371/journal.pbio.2001894.s016. short: T. Schmidt, N.H. Barton, G. Rasic, A. Turley, B. Montgomery, I. Iturbe Ormaetxe, P. Cook, P. Ryan, S. Ritchie, A. Hoffmann, S. O’Neill, M. Turelli, (2017). date_created: 2021-08-10T07:47:07Z date_published: 2017-05-30T00:00:00Z date_updated: 2023-09-22T10:02:51Z day: '30' department: - _id: NiBa doi: 10.1371/journal.pbio.2001894.s016 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '951' relation: used_in_publication status: public status: public title: Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9857' article_processing_charge: No author: - first_name: Tom full_name: Schmidt, Tom last_name: Schmidt - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gordana full_name: Rasic, Gordana last_name: Rasic - first_name: Andrew full_name: Turley, Andrew last_name: Turley - first_name: Brian full_name: Montgomery, Brian last_name: Montgomery - first_name: Inaki full_name: Iturbe Ormaetxe, Inaki last_name: Iturbe Ormaetxe - first_name: Peter full_name: Cook, Peter last_name: Cook - first_name: Peter full_name: Ryan, Peter last_name: Ryan - first_name: Scott full_name: Ritchie, Scott last_name: Ritchie - first_name: Ary full_name: Hoffmann, Ary last_name: Hoffmann - first_name: Scott full_name: O’Neill, Scott last_name: O’Neill - first_name: Michael full_name: Turelli, Michael last_name: Turelli citation: ama: Schmidt T, Barton NH, Rasic G, et al. Supporting information concerning observed wMel frequencies and analyses of habitat variables. 2017. doi:10.1371/journal.pbio.2001894.s015 apa: Schmidt, T., Barton, N. H., Rasic, G., Turley, A., Montgomery, B., Iturbe Ormaetxe, I., … Turelli, M. (2017). Supporting information concerning observed wMel frequencies and analyses of habitat variables. Public Library of Science . https://doi.org/10.1371/journal.pbio.2001894.s015 chicago: Schmidt, Tom, Nicholas H Barton, Gordana Rasic, Andrew Turley, Brian Montgomery, Inaki Iturbe Ormaetxe, Peter Cook, et al. “Supporting Information Concerning Observed WMel Frequencies and Analyses of Habitat Variables.” Public Library of Science , 2017. https://doi.org/10.1371/journal.pbio.2001894.s015. ieee: T. Schmidt et al., “Supporting information concerning observed wMel frequencies and analyses of habitat variables.” Public Library of Science , 2017. ista: Schmidt T, Barton NH, Rasic G, Turley A, Montgomery B, Iturbe Ormaetxe I, Cook P, Ryan P, Ritchie S, Hoffmann A, O’Neill S, Turelli M. 2017. Supporting information concerning observed wMel frequencies and analyses of habitat variables, Public Library of Science , 10.1371/journal.pbio.2001894.s015. mla: Schmidt, Tom, et al. Supporting Information Concerning Observed WMel Frequencies and Analyses of Habitat Variables. Public Library of Science , 2017, doi:10.1371/journal.pbio.2001894.s015. short: T. Schmidt, N.H. Barton, G. Rasic, A. Turley, B. Montgomery, I. Iturbe Ormaetxe, P. Cook, P. Ryan, S. Ritchie, A. Hoffmann, S. O’Neill, M. Turelli, (2017). date_created: 2021-08-10T07:41:52Z date_published: 2017-05-30T00:00:00Z date_updated: 2023-09-22T10:02:51Z day: '30' department: - _id: NiBa doi: 10.1371/journal.pbio.2001894.s015 month: '05' oa_version: Published Version publisher: 'Public Library of Science ' related_material: record: - id: '951' relation: used_in_publication status: public status: public title: Supporting information concerning observed wMel frequencies and analyses of habitat variables type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9856' article_processing_charge: No author: - first_name: Tom full_name: Schmidt, Tom last_name: Schmidt - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gordana full_name: Rasic, Gordana last_name: Rasic - first_name: Andrew full_name: Turley, Andrew last_name: Turley - first_name: Brian full_name: Montgomery, Brian last_name: Montgomery - first_name: Inaki full_name: Iturbe Ormaetxe, Inaki last_name: Iturbe Ormaetxe - first_name: Peter full_name: Cook, Peter last_name: Cook - first_name: Peter full_name: Ryan, Peter last_name: Ryan - first_name: Scott full_name: Ritchie, Scott last_name: Ritchie - first_name: Ary full_name: Hoffmann, Ary last_name: Hoffmann - first_name: Scott full_name: O’Neill, Scott last_name: O’Neill - first_name: Michael full_name: Turelli, Michael last_name: Turelli citation: ama: Schmidt T, Barton NH, Rasic G, et al. Supporting Information concerning additional likelihood analyses and results. 2017. doi:10.1371/journal.pbio.2001894.s014 apa: Schmidt, T., Barton, N. H., Rasic, G., Turley, A., Montgomery, B., Iturbe Ormaetxe, I., … Turelli, M. (2017). Supporting Information concerning additional likelihood analyses and results. Public Library of Science. https://doi.org/10.1371/journal.pbio.2001894.s014 chicago: Schmidt, Tom, Nicholas H Barton, Gordana Rasic, Andrew Turley, Brian Montgomery, Inaki Iturbe Ormaetxe, Peter Cook, et al. “Supporting Information Concerning Additional Likelihood Analyses and Results.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pbio.2001894.s014. ieee: T. Schmidt et al., “Supporting Information concerning additional likelihood analyses and results.” Public Library of Science, 2017. ista: Schmidt T, Barton NH, Rasic G, Turley A, Montgomery B, Iturbe Ormaetxe I, Cook P, Ryan P, Ritchie S, Hoffmann A, O’Neill S, Turelli M. 2017. Supporting Information concerning additional likelihood analyses and results, Public Library of Science, 10.1371/journal.pbio.2001894.s014. mla: Schmidt, Tom, et al. Supporting Information Concerning Additional Likelihood Analyses and Results. Public Library of Science, 2017, doi:10.1371/journal.pbio.2001894.s014. short: T. Schmidt, N.H. Barton, G. Rasic, A. Turley, B. Montgomery, I. Iturbe Ormaetxe, P. Cook, P. Ryan, S. Ritchie, A. Hoffmann, S. O’Neill, M. Turelli, (2017). date_created: 2021-08-10T07:36:04Z date_published: 2017-05-30T00:00:00Z date_updated: 2023-09-22T10:02:51Z day: '30' department: - _id: NiBa doi: 10.1371/journal.pbio.2001894.s014 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '951' relation: used_in_publication status: public status: public title: Supporting Information concerning additional likelihood analyses and results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '945' abstract: - lang: eng text: While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera. article_processing_charge: Yes (in subscription journal) author: - first_name: Ann K full_name: Huylmans, Ann K id: 4C0A3874-F248-11E8-B48F-1D18A9856A87 last_name: Huylmans orcid: 0000-0001-8871-4961 - first_name: Ariana full_name: Macon, Ariana id: 2A0848E2-F248-11E8-B48F-1D18A9856A87 last_name: Macon - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Huylmans AK, Macon A, Vicoso B. Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome. Molecular Biology and Evolution. 2017;34(10):2637-2649. doi:10.1093/molbev/msx190 apa: Huylmans, A. K., Macon, A., & Vicoso, B. (2017). Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome. Molecular Biology and Evolution. Oxford University Press. https://doi.org/10.1093/molbev/msx190 chicago: Huylmans, Ann K, Ariana Macon, and Beatriz Vicoso. “Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome.” Molecular Biology and Evolution. Oxford University Press, 2017. https://doi.org/10.1093/molbev/msx190. ieee: A. K. Huylmans, A. Macon, and B. Vicoso, “Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome,” Molecular Biology and Evolution, vol. 34, no. 10. Oxford University Press, pp. 2637–2649, 2017. ista: Huylmans AK, Macon A, Vicoso B. 2017. Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome. Molecular Biology and Evolution. 34(10), 2637–2649. mla: Huylmans, Ann K., et al. “Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome.” Molecular Biology and Evolution, vol. 34, no. 10, Oxford University Press, 2017, pp. 2637–49, doi:10.1093/molbev/msx190. short: A.K. Huylmans, A. Macon, B. Vicoso, Molecular Biology and Evolution 34 (2017) 2637–2649. date_created: 2018-12-11T11:49:20Z date_published: 2017-07-06T00:00:00Z date_updated: 2023-09-26T15:36:34Z day: '06' ddc: - '570' - '576' department: - _id: BeVi doi: 10.1093/molbev/msx190 external_id: isi: - '000411814800016' file: - access_level: open_access checksum: 009fd68043211d645ceb9d1de28274f2 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:23Z date_updated: 2020-07-14T12:48:15Z file_id: '4810' file_name: IST-2017-848-v1+1_2017_Vicoso_GlobalDosage.pdf file_size: 462863 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 34' isi: 1 issue: '10' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2637 - 2649 project: - _id: 250ED89C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28842-B22 name: Sex chromosome evolution under male- and female- heterogamety publication: Molecular Biology and Evolution publication_identifier: issn: - '07374038' publication_status: published publisher: Oxford University Press publist_id: '6472' pubrep_id: '848' quality_controlled: '1' scopus_import: '1' status: public title: Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 34 year: '2017' ... --- _id: '751' abstract: - lang: eng text: The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components. article_processing_charge: No author: - first_name: Yutaka full_name: Matsubayashi, Yutaka last_name: Matsubayashi - first_name: Adam full_name: Louani, Adam last_name: Louani - first_name: Anca full_name: Dragu, Anca last_name: Dragu - first_name: Besaiz full_name: Sanchez Sanchez, Besaiz last_name: Sanchez Sanchez - first_name: Eduardo full_name: Serna Morales, Eduardo last_name: Serna Morales - first_name: Lawrence full_name: Yolland, Lawrence last_name: Yolland - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Gema full_name: Vizcay, Gema last_name: Vizcay - first_name: Roland full_name: Fleck, Roland last_name: Fleck - first_name: John full_name: Heddleston, John last_name: Heddleston - first_name: Teng full_name: Chew, Teng last_name: Chew - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Brian full_name: Stramer, Brian last_name: Stramer citation: ama: Matsubayashi Y, Louani A, Dragu A, et al. A moving source of matrix components is essential for De Novo basement membrane formation. Current Biology. 2017;27(22):3526-3534e.4. doi:10.1016/j.cub.2017.10.001 apa: Matsubayashi, Y., Louani, A., Dragu, A., Sanchez Sanchez, B., Serna Morales, E., Yolland, L., … Stramer, B. (2017). A moving source of matrix components is essential for De Novo basement membrane formation. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.10.001 chicago: Matsubayashi, Yutaka, Adam Louani, Anca Dragu, Besaiz Sanchez Sanchez, Eduardo Serna Morales, Lawrence Yolland, Attila György, et al. “A Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.10.001. ieee: Y. Matsubayashi et al., “A moving source of matrix components is essential for De Novo basement membrane formation,” Current Biology, vol. 27, no. 22. Cell Press, p. 3526–3534e.4, 2017. ista: Matsubayashi Y, Louani A, Dragu A, Sanchez Sanchez B, Serna Morales E, Yolland L, György A, Vizcay G, Fleck R, Heddleston J, Chew T, Siekhaus DE, Stramer B. 2017. A moving source of matrix components is essential for De Novo basement membrane formation. Current Biology. 27(22), 3526–3534e.4. mla: Matsubayashi, Yutaka, et al. “A Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation.” Current Biology, vol. 27, no. 22, Cell Press, 2017, p. 3526–3534e.4, doi:10.1016/j.cub.2017.10.001. short: Y. Matsubayashi, A. Louani, A. Dragu, B. Sanchez Sanchez, E. Serna Morales, L. Yolland, A. György, G. Vizcay, R. Fleck, J. Heddleston, T. Chew, D.E. Siekhaus, B. Stramer, Current Biology 27 (2017) 3526–3534e.4. date_created: 2018-12-11T11:48:18Z date_published: 2017-11-09T00:00:00Z date_updated: 2023-09-27T12:25:31Z day: '09' ddc: - '570' - '576' department: - _id: DaSi doi: 10.1016/j.cub.2017.10.001 external_id: isi: - '000415815800031' file: - access_level: open_access checksum: 264cf6c6c3551486ba5ea786850e000a content_type: application/pdf creator: system date_created: 2018-12-12T10:09:45Z date_updated: 2020-07-14T12:47:59Z file_id: '4770' file_name: IST-2017-875-v1+1_1-s2.0-S0960982217312691-main.pdf file_size: 4770657 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 3526 - 3534e.4 publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6905' pubrep_id: '875' quality_controlled: '1' scopus_import: '1' status: public title: A moving source of matrix components is essential for De Novo basement membrane formation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2017' ...