--- _id: '743' abstract: - lang: eng text: "This special issue of the Journal on Formal Methods in System Design is dedicated to Prof. Helmut Veith, who unexpectedly passed away in March 2016. Helmut Veith was a brilliant researcher, inspiring collaborator, passionate mentor, generous friend, and valued member of the formal methods community. Helmut was not only known for his numerous and influential contributions in the field of automated verification (most prominently his work on Counterexample-Guided Abstraction Refinement [1,2]), but also for his untiring and passionate efforts for the logic community: he co-organized the Vienna Summer of Logic (an event comprising twelve conferences and numerous workshops which attracted thousands of researchers from all over the world), he initiated the Vienna Center for Logic and Algorithms (which promotes international collaboration on logic and algorithms and organizes outreach events such as the LogicLounge), and he coordinated the Doctoral Program on Logical Methods in Computer Science at TU Wien (currently educating more than 40 doctoral students) and a National Research Network on Rigorous Systems Engineering (uniting fifteen researchers in Austria to address the challenge of building reliable and safe computer\r\nsystems). With his enthusiasm and commitment, Helmut completely reshaped the Austrian research landscape in the field of logic and verification in his few years as a full professor at TU Wien." article_processing_charge: No author: - first_name: Georg full_name: Gottlob, Georg last_name: Gottlob - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Georg full_name: Weißenbacher, Georg last_name: Weißenbacher citation: ama: Gottlob G, Henzinger TA, Weißenbacher G. Preface of the special issue in memoriam Helmut Veith. Formal Methods in System Design. 2017;51(2):267-269. doi:10.1007/s10703-017-0307-6 apa: Gottlob, G., Henzinger, T. A., & Weißenbacher, G. (2017). Preface of the special issue in memoriam Helmut Veith. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-017-0307-6 chicago: Gottlob, Georg, Thomas A Henzinger, and Georg Weißenbacher. “Preface of the Special Issue in Memoriam Helmut Veith.” Formal Methods in System Design. Springer, 2017. https://doi.org/10.1007/s10703-017-0307-6. ieee: G. Gottlob, T. A. Henzinger, and G. Weißenbacher, “Preface of the special issue in memoriam Helmut Veith,” Formal Methods in System Design, vol. 51, no. 2. Springer, pp. 267–269, 2017. ista: Gottlob G, Henzinger TA, Weißenbacher G. 2017. Preface of the special issue in memoriam Helmut Veith. Formal Methods in System Design. 51(2), 267–269. mla: Gottlob, Georg, et al. “Preface of the Special Issue in Memoriam Helmut Veith.” Formal Methods in System Design, vol. 51, no. 2, Springer, 2017, pp. 267–69, doi:10.1007/s10703-017-0307-6. short: G. Gottlob, T.A. Henzinger, G. Weißenbacher, Formal Methods in System Design 51 (2017) 267–269. date_created: 2018-12-11T11:48:16Z date_published: 2017-11-14T00:00:00Z date_updated: 2023-09-27T12:29:29Z day: '14' department: - _id: ToHe doi: 10.1007/s10703-017-0307-6 external_id: isi: - '000415615600001' intvolume: ' 51' isi: 1 issue: '2' language: - iso: eng month: '11' oa_version: None page: 267 - 269 publication: Formal Methods in System Design publication_status: published publisher: Springer publist_id: '6924' quality_controlled: '1' status: public title: Preface of the special issue in memoriam Helmut Veith type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 51 year: '2017' ... --- _id: '961' abstract: - lang: eng text: Cell-cell contact formation constitutes the first step in the emergence of multicellularity in evolution, thereby allowing the differentiation of specialized cell types. In metazoan development, cell-cell contact formation is thought to influence cell fate specification, and cell fate specification has been implicated in cell-cell contact formation. However, remarkably little is yet known about whether and how the interaction and feedback between cell-cell contact formation and cell fate specification affect development. Here we identify a positive feedback loop between cell-cell contact duration, morphogen signaling and mesendoderm cell fate specification during zebrafish gastrulation. We show that long lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for proper ppl cell fate specification. We further show that Nodal signalling romotes ppl cell-cell contact duration, thereby generating an effective positive feedback loop between ppl cell-cell contact duration and cell fate specification. Finally, by using a combination of theoretical modeling and experimentation, we show that this feedback loop determines whether anterior axial mesendoderm cells become ppl progenitors or, instead, turn into endoderm progenitors. Our findings reveal that the gene regulatory networks leading to cell fate diversification within the developing embryo are controlled by the interdependent activities of cell-cell signaling and contact formation. acknowledgement: "Many people accompanied me during this trip: I would not have reached my destination nor \r\nenjoyed the travelling without them. First of all, thanks to CP. Thanks for making me part of \r\nyour team, always full of diverse, interesting and incredibly competent people and thanks for \r\nall the good science I witnessed \ and participated in. It has been a \r\nblast, an incredibly \r\nexciting \ one! Thanks to JLo, for teaching me how to master my pipettes and \ showing me \r\nthat science is a lot of fun. Many, many thanks to Gabby for teaching me basically everything \r\nabout zebrafish and being always there to advice, \ sugge\r\nst, support...and play fussball! \r\nThank you to Julien, for the critical eye on things, Pedro, for all the invaluable feedback and \r\nthe amazing kicker matches, and Keisuke, for showing me the light, and to the three of them \r\ntogether for all the good laughs we\r\nhad. My start in Vienna would \ have been a lot more \r\ndifficult without you guys. Also it would not \ have been possible without Elena and Inês: \r\nthanks for helping setting \ up this lab and for the dinners in Gugging. Thanks to Martin, for \r\nhelping me understand \r\nthe physics behind biology. Thanks to Philipp, \ for the interest and \r\nadvice, and to Michael, for the Viennise take on things. Thanks to Julia, for putting up with \r\nbeing our technician and becoming a friend in the process. And now to the newest members \r\nof th\r\ne lab. Thanks to Daniel for the enthusiasm and the neverending energy and for all your \r\nhelp over the years: thank you! To Jana, for showing me that one doesn’t give up, no matter \r\nwhat. \ To Shayan, for being such a motivated student. To Matt, for helping \ out\r\nwith coding \r\nand for finding punk solutions to data analysis problems. Thanks to all the members of the \r\nlab, Verena, Hitoshi, Silvia, Conny, Karla, Nicoletta, Zoltan, Peng, Benoit, Roland, Yuuta and \r\nFeyza, for the wonderful \ atmosphere in the lab. Many than\r\nks to Koni and Deborah: doing \r\nexperiments would have been much more difficult without your help. Special thanks to Katjia \r\nfor setting up an amazing imaging facility and for building the best \ team, Robert, Nasser, \r\nAnna and Doreen: thank you for putting up w\r\nith all the late sortings and for helping with all \r\nthe technical problems. Thanks to Eva, Verena and Matthias for keeping the fish happy. Big \r\nthanks to Harald Janovjak for being a present and helpful committee member over the years \r\nand \ to Patrick Lemaire f\r\nor the helpful insight and extremely interesting \ discussion we had \r\nabout the project. Also, this journey would not \ have been the same without all the friends \r\nthat I met in Dresden and then in Vienna: Daniele, Claire, Kuba, Steffi, Harold, Dejan, Irene, \r\nFab\r\nienne, Hande, Tiago, Marianne, Jon, Srdjan, Branca, Uli, Murat, Alex, Conny, Christoph, \r\nCaro, Simone, Barbara, Felipe, Dama, Jose, Hubert and many others that filled my days with \r\nfun and support. A special thank to my family, always close even if they are \r\nkilometers away. \r\nGrazie ai miei fratelli, Nunzio e William, \ e alla mia mamma, per essermi sempre vicini pur \r\nvivendo a chilometri di distanza. And, last but not least, thanks to Moritz, for putting up with \r\nthe crazy life of a scientist, the living apart for\r\nso long, never knowing when things are going \r\nto happen. Thanks for being a great partner and my number one fan!" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 citation: ama: 'Barone V. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. 2017. doi:10.15479/AT:ISTA:th_825' apa: 'Barone, V. (2017). Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_825' chicago: 'Barone, Vanessa. “Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_825.' ieee: 'V. Barone, “Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation,” Institute of Science and Technology Austria, 2017.' ista: 'Barone V. 2017. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria.' mla: 'Barone, Vanessa. Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_825.' short: 'V. Barone, Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation, Institute of Science and Technology Austria, 2017.' date_created: 2018-12-11T11:49:25Z date_published: 2017-03-01T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '01' ddc: - '570' - '590' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:th_825 file: - access_level: closed checksum: 242f88c87f2cf267bf05049fa26a687b content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6205' file_name: 2017_Barone_thesis_final.docx file_size: 14497822 relation: source_file - access_level: open_access checksum: ba5b0613ed8bade73a409acdd880fb8a content_type: application/pdf creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6206' file_name: 2017_Barone_thesis_.pdf file_size: 14995941 relation: main_file file_date_updated: 2020-07-14T12:48:16Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6444' pubrep_id: '825' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '1537' relation: part_of_dissertation status: public - id: '1912' relation: part_of_dissertation status: public - id: '2926' relation: part_of_dissertation status: public - id: '3246' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '734' abstract: - lang: eng text: 'Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality.' article_processing_charge: No article_type: original author: - first_name: Patrick full_name: Kennedy, Patrick last_name: Kennedy - first_name: Gemma full_name: Baron, Gemma last_name: Baron - first_name: Bitao full_name: Qiu, Bitao last_name: Qiu - first_name: Dalial full_name: Freitak, Dalial last_name: Freitak - first_name: Heikki full_name: Helantera, Heikki last_name: Helantera - first_name: Edmund full_name: Hunt, Edmund last_name: Hunt - first_name: Fabio full_name: Manfredini, Fabio last_name: Manfredini - first_name: Thomas full_name: O'Shea Wheller, Thomas last_name: O'Shea Wheller - first_name: Solenn full_name: Patalano, Solenn last_name: Patalano - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Takao full_name: Sasaki, Takao last_name: Sasaki - first_name: Daisy full_name: Taylor, Daisy last_name: Taylor - first_name: Christopher full_name: Wyatt, Christopher last_name: Wyatt - first_name: Seirian full_name: Sumner, Seirian last_name: Sumner citation: ama: Kennedy P, Baron G, Qiu B, et al. Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. 2017;32(11):861-872. doi:10.1016/j.tree.2017.08.004 apa: Kennedy, P., Baron, G., Qiu, B., Freitak, D., Helantera, H., Hunt, E., … Sumner, S. (2017). Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. Cell Press. https://doi.org/10.1016/j.tree.2017.08.004 chicago: Kennedy, Patrick, Gemma Baron, Bitao Qiu, Dalial Freitak, Heikki Helantera, Edmund Hunt, Fabio Manfredini, et al. “Deconstructing Superorganisms and Societies to Address Big Questions in Biology.” Trends in Ecology and Evolution. Cell Press, 2017. https://doi.org/10.1016/j.tree.2017.08.004. ieee: P. Kennedy et al., “Deconstructing superorganisms and societies to address big questions in biology,” Trends in Ecology and Evolution, vol. 32, no. 11. Cell Press, pp. 861–872, 2017. ista: Kennedy P, Baron G, Qiu B, Freitak D, Helantera H, Hunt E, Manfredini F, O’Shea Wheller T, Patalano S, Pull C, Sasaki T, Taylor D, Wyatt C, Sumner S. 2017. Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. 32(11), 861–872. mla: Kennedy, Patrick, et al. “Deconstructing Superorganisms and Societies to Address Big Questions in Biology.” Trends in Ecology and Evolution, vol. 32, no. 11, Cell Press, 2017, pp. 861–72, doi:10.1016/j.tree.2017.08.004. short: P. Kennedy, G. Baron, B. Qiu, D. Freitak, H. Helantera, E. Hunt, F. Manfredini, T. O’Shea Wheller, S. Patalano, C. Pull, T. Sasaki, D. Taylor, C. Wyatt, S. Sumner, Trends in Ecology and Evolution 32 (2017) 861–872. date_created: 2018-12-11T11:48:13Z date_published: 2017-11-01T00:00:00Z date_updated: 2023-09-27T14:15:15Z day: '01' ddc: - '570' department: - _id: SyCr doi: 10.1016/j.tree.2017.08.004 external_id: isi: - '000413231900011' file: - access_level: open_access checksum: c8f49309ed9436201814fa7153d66a99 content_type: application/pdf creator: dernst date_created: 2020-05-14T16:22:27Z date_updated: 2020-07-14T12:47:56Z file_id: '7842' file_name: 2017_TrendsEcology_Kennedy.pdf file_size: 15018382 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 32' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 861 - 872 publication: Trends in Ecology and Evolution publication_identifier: issn: - '01695347' publication_status: published publisher: Cell Press publist_id: '6933' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: Deconstructing superorganisms and societies to address big questions in biology type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2017' ... --- _id: '819' abstract: - lang: eng text: 'Contagious diseases must transmit from infectious to susceptible hosts in order to reproduce. Whilst vectored pathogens can rely on intermediaries to find new hosts for them, many infectious pathogens require close contact or direct interaction between hosts for transmission. Hence, this means that conspecifics are often the main source of infection for most animals and so, in theory, animals should avoid conspecifics to reduce their risk of infection. Of course, in reality animals must interact with one another, as a bare minimum, to mate. However, being social provides many additional benefits and group living has become a taxonomically diverse and widespread trait. How then do social animals overcome the issue of increased disease? Over the last few decades, the social insects (ants, termites and some bees and wasps) have become a model system for studying disease in social animals. On paper, a social insect colony should be particularly susceptible to disease, given that they often contain thousands of potential hosts that are closely related and frequently interact, as well as exhibiting stable environmental conditions that encourage microbial growth. Yet, disease outbreaks appear to be rare and attempts to eradicate pest species using pathogens have failed time and again. Evolutionary biologists investigating this observation have discovered that the reduced disease susceptibility in social insects is, in part, due to collectively performed disease defences of the workers. These defences act like a “social immune system” for the colony, resulting in a per capita decrease in disease, termed social immunity. Our understanding of social immunity, and its importance in relation to the immunological defences of each insect, continues to grow, but there remain many open questions. In this thesis I have studied disease defence in garden ants. In the first data chapter, I use the invasive garden ant, Lasius neglectus, to investigate how colonies mitigate lethal infections and prevent them from spreading systemically. I find that ants have evolved ‘destructive disinfection’ – a behaviour that uses endogenously produced acidic poison to kill diseased brood and to prevent the pathogen from replicating. In the second experimental chapter, I continue to study the use of poison in invasive garden ant colonies, finding that it is sprayed prophylactically within the nest. However, this spraying has negative effects on developing pupae when they have had their cocoons artificially removed. Hence, I suggest that acidic nest sanitation may be maintaining larval cocoon spinning in this species. In the next experimental chapter, I investigated how colony founding black garden ant queens (Lasius niger) prevent disease when a co-foundress dies. I show that ant queens prophylactically perform undertaking behaviours, similar to those performed by the workers in mature nests. When a co-foundress was infected, these undertaking behaviours improved the survival of the healthy queen. In the final data chapter, I explored how immunocompetence (measured as antifungal activity) changes as incipient black garden ant colonies grow and mature, from the solitary queen phase to colonies with several hundred workers. Queen and worker antifungal activity varied throughout this time period, but despite social immunity, did not decrease as colonies matured. In addition to the above data chapters, this thesis includes two co-authored reviews. In the first, we examine the state of the art in the field of social immunity and how it might develop in the future. In the second, we identify several challenges and open questions in the study of disease defence in animals. We highlight how social insects offer a unique model to tackle some of these problems, as disease defence can be studied from the cell to the society. ' acknowledgement: "ERC FP7 programme (grant agreement no. 240371)\r\nI have been supremely spoilt to work in a lab with such good resources and I must thank the wonderful Cremer group technicians, Anna, Barbara, Eva and Florian, for all of their help and keeping the lab up and running. You guys will probably be the most missed once I realise just how much work you have been saving me! For the same reason, I must say a big Dzi ę kuj ę Ci to Wonder Woman Wanda, for her tireless efforts feeding my colonies and cranking out thousands of petri dishes and sugar tubes. Again, you will be sorely missed now that I will have to take this task on myself. Of course, I will be eternally indebted to Prof. Sylvia Cremer for taking me under her wing and being a constant source of guidance and inspiration. You have given me the perfect balance of independence and supervision. I cannot thank you enough for creating such a great working environment and allowing me the freedom to follow my own research questions. I have had so many exceptional opportunities – attending and presenting at conferences all over the world, inviting me to write the ARE with you, going to workshops in Panama and Switzerland, and even organising our own PhD course – that I often think I must have had the best PhD in the world. You have taught me so much and made me a scientist. I sincerely hope we get the chance to work together again in the future. Thank you for everything. I must also thank my PhD Committee, Daria Siekhaus and Jacobus “Koos” Boomsma, for being very supportive throughout the duration of my PhD. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 citation: ama: Pull C. Disease defence in garden ants. 2017. doi:10.15479/AT:ISTA:th_861 apa: Pull, C. (2017). Disease defence in garden ants. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_861 chicago: Pull, Christopher. “Disease Defence in Garden Ants.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_861. ieee: C. Pull, “Disease defence in garden ants,” Institute of Science and Technology Austria, 2017. ista: Pull C. 2017. Disease defence in garden ants. Institute of Science and Technology Austria. mla: Pull, Christopher. Disease Defence in Garden Ants. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_861. short: C. Pull, Disease Defence in Garden Ants, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:40Z date_published: 2017-09-26T00:00:00Z date_updated: 2023-09-28T11:31:32Z day: '26' ddc: - '576' - '577' - '578' - '579' - '590' - '592' degree_awarded: PhD department: - _id: SyCr doi: 10.15479/AT:ISTA:th_861 file: - access_level: closed checksum: 4993cdd5382295758ecc3ecbd2a9aaff content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6199' file_name: 2017_Thesis_Pull.docx file_size: 18580400 relation: source_file - access_level: open_access checksum: ee2e3ebb5b53c154c866f5b052b25153 content_type: application/pdf creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6200' file_name: 2017_Thesis_Pull.pdf file_size: 14400681 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '122' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6830' pubrep_id: '861' related_material: record: - id: '616' relation: part_of_dissertation status: public - id: '806' relation: part_of_dissertation status: public - id: '734' relation: part_of_dissertation status: public - id: '732' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Disease defence in garden ants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '732' abstract: - lang: eng text: 'Background: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results: Using Lasius Niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.' article_number: '219' article_processing_charge: Yes article_type: original author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Pull C, Cremer S. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evolutionary Biology. 2017;17(1). doi:10.1186/s12862-017-1062-4 apa: Pull, C., & Cremer, S. (2017). Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evolutionary Biology. BioMed Central. https://doi.org/10.1186/s12862-017-1062-4 chicago: Pull, Christopher, and Sylvia Cremer. “Co-Founding Ant Queens Prevent Disease by Performing Prophylactic Undertaking Behaviour.” BMC Evolutionary Biology. BioMed Central, 2017. https://doi.org/10.1186/s12862-017-1062-4. ieee: C. Pull and S. Cremer, “Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour,” BMC Evolutionary Biology, vol. 17, no. 1. BioMed Central, 2017. ista: Pull C, Cremer S. 2017. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour. BMC Evolutionary Biology. 17(1), 219. mla: Pull, Christopher, and Sylvia Cremer. “Co-Founding Ant Queens Prevent Disease by Performing Prophylactic Undertaking Behaviour.” BMC Evolutionary Biology, vol. 17, no. 1, 219, BioMed Central, 2017, doi:10.1186/s12862-017-1062-4. short: C. Pull, S. Cremer, BMC Evolutionary Biology 17 (2017). date_created: 2018-12-11T11:48:12Z date_published: 2017-10-13T00:00:00Z date_updated: 2023-09-28T11:31:32Z day: '13' ddc: - '576' - '592' department: - _id: SyCr doi: 10.1186/s12862-017-1062-4 ec_funded: 1 external_id: isi: - '000412816800001' file: - access_level: open_access checksum: 3e24a2cfd48f49f7b3643d08d30fb480 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:18Z date_updated: 2020-07-14T12:47:55Z file_id: '5271' file_name: IST-2017-882-v1+1_12862_2017_Article_1062.pdf file_size: 949857 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: BMC Evolutionary Biology publication_identifier: issn: - '14712148' publication_status: published publisher: BioMed Central publist_id: '6937' pubrep_id: '882' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2017' ... --- _id: '726' abstract: - lang: eng text: The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events. article_processing_charge: No author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Colinda full_name: Scheele, Colinda last_name: Scheele - first_name: Mohammad full_name: Moad, Mohammad last_name: Moad - first_name: Nicholas full_name: Drogo, Nicholas last_name: Drogo - first_name: Rakesh full_name: Heer, Rakesh last_name: Heer - first_name: Rosemary full_name: Sampogna, Rosemary last_name: Sampogna - first_name: Jacco full_name: Van Rheenen, Jacco last_name: Van Rheenen - first_name: Benjamin full_name: Simons, Benjamin last_name: Simons citation: ama: Hannezo EB, Scheele C, Moad M, et al. A unifying theory of branching morphogenesis. Cell. 2017;171(1):242-255. doi:10.1016/j.cell.2017.08.026 apa: Hannezo, E. B., Scheele, C., Moad, M., Drogo, N., Heer, R., Sampogna, R., … Simons, B. (2017). A unifying theory of branching morphogenesis. Cell. Cell Press. https://doi.org/10.1016/j.cell.2017.08.026 chicago: Hannezo, Edouard B, Colinda Scheele, Mohammad Moad, Nicholas Drogo, Rakesh Heer, Rosemary Sampogna, Jacco Van Rheenen, and Benjamin Simons. “A Unifying Theory of Branching Morphogenesis.” Cell. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.08.026. ieee: E. B. Hannezo et al., “A unifying theory of branching morphogenesis,” Cell, vol. 171, no. 1. Cell Press, pp. 242–255, 2017. ista: Hannezo EB, Scheele C, Moad M, Drogo N, Heer R, Sampogna R, Van Rheenen J, Simons B. 2017. A unifying theory of branching morphogenesis. Cell. 171(1), 242–255. mla: Hannezo, Edouard B., et al. “A Unifying Theory of Branching Morphogenesis.” Cell, vol. 171, no. 1, Cell Press, 2017, pp. 242–55, doi:10.1016/j.cell.2017.08.026. short: E.B. Hannezo, C. Scheele, M. Moad, N. Drogo, R. Heer, R. Sampogna, J. Van Rheenen, B. Simons, Cell 171 (2017) 242–255. date_created: 2018-12-11T11:48:10Z date_published: 2017-09-21T00:00:00Z date_updated: 2023-09-28T11:34:17Z day: '21' ddc: - '539' department: - _id: EdHa doi: 10.1016/j.cell.2017.08.026 external_id: isi: - '000411331800024' file: - access_level: open_access checksum: 7a036d93a9e2e597af9bb504d6133aca content_type: application/pdf creator: system date_created: 2018-12-12T10:11:17Z date_updated: 2020-07-14T12:47:55Z file_id: '4870' file_name: IST-2017-883-v1+1_PIIS0092867417309510.pdf file_size: 12670204 relation: main_file file_date_updated: 2020-07-14T12:47:55Z has_accepted_license: '1' intvolume: ' 171' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 242 - 255 publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Cell Press publist_id: '6952' pubrep_id: '883' quality_controlled: '1' scopus_import: '1' status: public title: A unifying theory of branching morphogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 171 year: '2017' ... --- _id: '727' abstract: - lang: eng text: 'Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load.' acknowledged_ssus: - _id: ScienComp article_processing_charge: No author: - first_name: Jan full_name: Mueller, Jan last_name: Mueller - first_name: Gregory full_name: Szep, Gregory id: 4BFB7762-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Maria full_name: Nemethova, Maria id: 34E27F1C-F248-11E8-B48F-1D18A9856A87 last_name: Nemethova - first_name: Ingrid full_name: De Vries, Ingrid id: 4C7D837E-F248-11E8-B48F-1D18A9856A87 last_name: De Vries - first_name: Arnon full_name: Lieber, Arnon last_name: Lieber - first_name: Christoph full_name: Winkler, Christoph last_name: Winkler - first_name: Karsten full_name: Kruse, Karsten last_name: Kruse - first_name: John full_name: Small, John last_name: Small - first_name: Christian full_name: Schmeiser, Christian last_name: Schmeiser - first_name: Kinneret full_name: Keren, Kinneret last_name: Keren - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Mueller J, Szep G, Nemethova M, et al. Load adaptation of lamellipodial actin networks. Cell. 2017;171(1):188-200. doi:10.1016/j.cell.2017.07.051 apa: Mueller, J., Szep, G., Nemethova, M., de Vries, I., Lieber, A., Winkler, C., … Sixt, M. K. (2017). Load adaptation of lamellipodial actin networks. Cell. Cell Press. https://doi.org/10.1016/j.cell.2017.07.051 chicago: Mueller, Jan, Gregory Szep, Maria Nemethova, Ingrid de Vries, Arnon Lieber, Christoph Winkler, Karsten Kruse, et al. “Load Adaptation of Lamellipodial Actin Networks.” Cell. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.07.051. ieee: J. Mueller et al., “Load adaptation of lamellipodial actin networks,” Cell, vol. 171, no. 1. Cell Press, pp. 188–200, 2017. ista: Mueller J, Szep G, Nemethova M, de Vries I, Lieber A, Winkler C, Kruse K, Small J, Schmeiser C, Keren K, Hauschild R, Sixt MK. 2017. Load adaptation of lamellipodial actin networks. Cell. 171(1), 188–200. mla: Mueller, Jan, et al. “Load Adaptation of Lamellipodial Actin Networks.” Cell, vol. 171, no. 1, Cell Press, 2017, pp. 188–200, doi:10.1016/j.cell.2017.07.051. short: J. Mueller, G. Szep, M. Nemethova, I. de Vries, A. Lieber, C. Winkler, K. Kruse, J. Small, C. Schmeiser, K. Keren, R. Hauschild, M.K. Sixt, Cell 171 (2017) 188–200. date_created: 2018-12-11T11:48:10Z date_published: 2017-09-21T00:00:00Z date_updated: 2023-09-28T11:33:49Z day: '21' department: - _id: MiSi - _id: Bio doi: 10.1016/j.cell.2017.07.051 ec_funded: 1 external_id: isi: - '000411331800020' intvolume: ' 171' isi: 1 issue: '1' language: - iso: eng month: '09' oa_version: None page: 188 - 200 project: - _id: 25AD6156-B435-11E9-9278-68D0E5697425 grant_number: LS13-029 name: Modeling of Polarization and Motility of Leukocytes in Three-Dimensional Environments - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) publication: Cell publication_identifier: issn: - '00928674' publication_status: published publisher: Cell Press publist_id: '6951' quality_controlled: '1' scopus_import: '1' status: public title: Load adaptation of lamellipodial actin networks type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 171 year: '2017' ... --- _id: '730' abstract: - lang: eng text: Neural responses are highly structured, with population activity restricted to a small subset of the astronomical range of possible activity patterns. Characterizing these statistical regularities is important for understanding circuit computation, but challenging in practice. Here we review recent approaches based on the maximum entropy principle used for quantifying collective behavior in neural activity. We highlight recent models that capture population-level statistics of neural data, yielding insights into the organization of the neural code and its biological substrate. Furthermore, the MaxEnt framework provides a general recipe for constructing surrogate ensembles that preserve aspects of the data, but are otherwise maximally unstructured. This idea can be used to generate a hierarchy of controls against which rigorous statistical tests are possible. article_processing_charge: No author: - first_name: Cristina full_name: Savin, Cristina id: 3933349E-F248-11E8-B48F-1D18A9856A87 last_name: Savin - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 citation: ama: Savin C, Tkačik G. Maximum entropy models as a tool for building precise neural controls. Current Opinion in Neurobiology. 2017;46:120-126. doi:10.1016/j.conb.2017.08.001 apa: Savin, C., & Tkačik, G. (2017). Maximum entropy models as a tool for building precise neural controls. Current Opinion in Neurobiology. Elsevier. https://doi.org/10.1016/j.conb.2017.08.001 chicago: Savin, Cristina, and Gašper Tkačik. “Maximum Entropy Models as a Tool for Building Precise Neural Controls.” Current Opinion in Neurobiology. Elsevier, 2017. https://doi.org/10.1016/j.conb.2017.08.001. ieee: C. Savin and G. Tkačik, “Maximum entropy models as a tool for building precise neural controls,” Current Opinion in Neurobiology, vol. 46. Elsevier, pp. 120–126, 2017. ista: Savin C, Tkačik G. 2017. Maximum entropy models as a tool for building precise neural controls. Current Opinion in Neurobiology. 46, 120–126. mla: Savin, Cristina, and Gašper Tkačik. “Maximum Entropy Models as a Tool for Building Precise Neural Controls.” Current Opinion in Neurobiology, vol. 46, Elsevier, 2017, pp. 120–26, doi:10.1016/j.conb.2017.08.001. short: C. Savin, G. Tkačik, Current Opinion in Neurobiology 46 (2017) 120–126. date_created: 2018-12-11T11:48:11Z date_published: 2017-10-01T00:00:00Z date_updated: 2023-09-28T11:32:22Z day: '01' department: - _id: GaTk doi: 10.1016/j.conb.2017.08.001 ec_funded: 1 external_id: isi: - '000416196400016' intvolume: ' 46' isi: 1 language: - iso: eng month: '10' oa_version: None page: 120 - 126 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Current Opinion in Neurobiology publication_identifier: issn: - '09594388' publication_status: published publisher: Elsevier publist_id: '6943' quality_controlled: '1' scopus_import: '1' status: public title: Maximum entropy models as a tool for building precise neural controls type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 46 year: '2017' ... --- _id: '728' abstract: - lang: eng text: During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development. article_processing_charge: No author: - first_name: Chii full_name: Chan, Chii last_name: Chan - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Takashi full_name: Hiiragi, Takashi last_name: Hiiragi citation: ama: Chan C, Heisenberg C-PJ, Hiiragi T. Coordination of morphogenesis and cell fate specification in development. Current Biology. 2017;27(18):R1024-R1035. doi:10.1016/j.cub.2017.07.010 apa: Chan, C., Heisenberg, C.-P. J., & Hiiragi, T. (2017). Coordination of morphogenesis and cell fate specification in development. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.07.010 chicago: Chan, Chii, Carl-Philipp J Heisenberg, and Takashi Hiiragi. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.07.010. ieee: C. Chan, C.-P. J. Heisenberg, and T. Hiiragi, “Coordination of morphogenesis and cell fate specification in development,” Current Biology, vol. 27, no. 18. Cell Press, pp. R1024–R1035, 2017. ista: Chan C, Heisenberg C-PJ, Hiiragi T. 2017. Coordination of morphogenesis and cell fate specification in development. Current Biology. 27(18), R1024–R1035. mla: Chan, Chii, et al. “Coordination of Morphogenesis and Cell Fate Specification in Development.” Current Biology, vol. 27, no. 18, Cell Press, 2017, pp. R1024–35, doi:10.1016/j.cub.2017.07.010. short: C. Chan, C.-P.J. Heisenberg, T. Hiiragi, Current Biology 27 (2017) R1024–R1035. date_created: 2018-12-11T11:48:11Z date_published: 2017-09-18T00:00:00Z date_updated: 2023-09-28T11:33:21Z day: '18' department: - _id: CaHe doi: 10.1016/j.cub.2017.07.010 external_id: isi: - '000411581800019' intvolume: ' 27' isi: 1 issue: '18' language: - iso: eng month: '09' oa_version: None page: R1024 - R1035 publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6949' quality_controlled: '1' scopus_import: '1' status: public title: Coordination of morphogenesis and cell fate specification in development type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2017' ... --- _id: '729' abstract: - lang: eng text: The cellular mechanisms allowing tissues to efficiently regenerate are not fully understood. In this issue of Developmental Cell, Cao et al. (2017)) discover that during zebrafish heart regeneration, epicardial cells at the leading edge of regenerating tissue undergo endoreplication, possibly due to increased tissue tension, thereby boosting their regenerative capacity. article_processing_charge: No author: - first_name: Zoltan P full_name: Spiro, Zoltan P id: 426AD026-F248-11E8-B48F-1D18A9856A87 last_name: Spiro - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Spiro ZP, Heisenberg C-PJ. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 2017;42(6):559-560. doi:10.1016/j.devcel.2017.09.008 apa: Spiro, Z. P., & Heisenberg, C.-P. J. (2017). Regeneration tensed up polyploidy takes the lead. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2017.09.008 chicago: Spiro, Zoltan P, and Carl-Philipp J Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell. Cell Press, 2017. https://doi.org/10.1016/j.devcel.2017.09.008. ieee: Z. P. Spiro and C.-P. J. Heisenberg, “Regeneration tensed up polyploidy takes the lead,” Developmental Cell, vol. 42, no. 6. Cell Press, pp. 559–560, 2017. ista: Spiro ZP, Heisenberg C-PJ. 2017. Regeneration tensed up polyploidy takes the lead. Developmental Cell. 42(6), 559–560. mla: Spiro, Zoltan P., and Carl-Philipp J. Heisenberg. “Regeneration Tensed up Polyploidy Takes the Lead.” Developmental Cell, vol. 42, no. 6, Cell Press, 2017, pp. 559–60, doi:10.1016/j.devcel.2017.09.008. short: Z.P. Spiro, C.-P.J. Heisenberg, Developmental Cell 42 (2017) 559–560. date_created: 2018-12-11T11:48:11Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-28T11:32:49Z day: '01' department: - _id: CaHe doi: 10.1016/j.devcel.2017.09.008 external_id: isi: - '000411582800003' intvolume: ' 42' isi: 1 issue: '6' language: - iso: eng month: '01' oa_version: None page: 559 - 560 publication: Developmental Cell publication_identifier: issn: - '15345807' publication_status: published publisher: Cell Press publist_id: '6948' quality_controlled: '1' scopus_import: '1' status: public title: Regeneration tensed up polyploidy takes the lead type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 42 year: '2017' ... --- _id: '548' abstract: - lang: eng text: In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region. alternative_title: - Rapid Communications article_number: '060401' article_processing_charge: No author: - first_name: Daniele full_name: De Martino, Daniele id: 3FF5848A-F248-11E8-B48F-1D18A9856A87 last_name: De Martino orcid: 0000-0002-5214-4706 citation: ama: De Martino D. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Physical Review E. 2017;96(6). doi:10.1103/PhysRevE.96.060401 apa: De Martino, D. (2017). Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.96.060401 chicago: De Martino, Daniele. “Maximum Entropy Modeling of Metabolic Networks by Constraining Growth-Rate Moments Predicts Coexistence of Phenotypes.” Physical Review E. American Physical Society, 2017. https://doi.org/10.1103/PhysRevE.96.060401. ieee: D. De Martino, “Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes,” Physical Review E, vol. 96, no. 6. American Physical Society, 2017. ista: De Martino D. 2017. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Physical Review E. 96(6), 060401. mla: De Martino, Daniele. “Maximum Entropy Modeling of Metabolic Networks by Constraining Growth-Rate Moments Predicts Coexistence of Phenotypes.” Physical Review E, vol. 96, no. 6, 060401, American Physical Society, 2017, doi:10.1103/PhysRevE.96.060401. short: D. De Martino, Physical Review E 96 (2017). date_created: 2018-12-11T11:47:06Z date_published: 2017-12-21T00:00:00Z date_updated: 2023-10-10T13:29:38Z day: '21' department: - _id: GaTk doi: 10.1103/PhysRevE.96.060401 ec_funded: 1 intvolume: ' 96' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1707.00320 month: '12' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review E publication_identifier: issn: - 2470-0045 publication_status: published publisher: American Physical Society publist_id: '7266' quality_controlled: '1' scopus_import: '1' status: public title: Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2017' ... --- _id: '673' abstract: - lang: eng text: We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored. article_number: '053103' article_processing_charge: No author: - first_name: Sebastian full_name: Altmeyer, Sebastian id: 2EE67FDC-F248-11E8-B48F-1D18A9856A87 last_name: Altmeyer orcid: 0000-0001-5964-0203 - first_name: Richard full_name: Lueptow, Richard last_name: Lueptow citation: ama: Altmeyer S, Lueptow R. Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow. Physical Review E. 2017;95(5). doi:10.1103/PhysRevE.95.053103 apa: Altmeyer, S., & Lueptow, R. (2017). Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.95.053103 chicago: Altmeyer, Sebastian, and Richard Lueptow. “Wave Propagation Reversal for Wavy Vortices in Wide Gap Counter Rotating Cylindrical Couette Flow.” Physical Review E. American Physical Society, 2017. https://doi.org/10.1103/PhysRevE.95.053103. ieee: S. Altmeyer and R. Lueptow, “Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow,” Physical Review E, vol. 95, no. 5. American Physical Society, 2017. ista: Altmeyer S, Lueptow R. 2017. Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow. Physical Review E. 95(5), 053103. mla: Altmeyer, Sebastian, and Richard Lueptow. “Wave Propagation Reversal for Wavy Vortices in Wide Gap Counter Rotating Cylindrical Couette Flow.” Physical Review E, vol. 95, no. 5, 053103, American Physical Society, 2017, doi:10.1103/PhysRevE.95.053103. short: S. Altmeyer, R. Lueptow, Physical Review E 95 (2017). date_created: 2018-12-11T11:47:50Z date_published: 2017-05-10T00:00:00Z date_updated: 2023-10-10T13:30:03Z day: '10' department: - _id: BjHo doi: 10.1103/PhysRevE.95.053103 intvolume: ' 95' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/pdf/physics/0505164.pdf month: '05' oa: 1 oa_version: Submitted Version publication: Physical Review E publication_identifier: issn: - 2470-0045 publication_status: published publisher: American Physical Society publist_id: '7049' scopus_import: '1' status: public title: Wave propagation reversal for wavy vortices in wide gap counter rotating cylindrical Couette flow type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 95 year: '2017' ... --- _id: '447' abstract: - lang: eng text: We consider last passage percolation (LPP) models with exponentially distributed random variables, which are linked to the totally asymmetric simple exclusion process (TASEP). The competition interface for LPP was introduced and studied in Ferrari and Pimentel (2005a) for cases where the corresponding exclusion process had a rarefaction fan. Here we consider situations with a shock and determine the law of the fluctuations of the competition interface around its deter- ministic law of large number position. We also study the multipoint distribution of the LPP around the shock, extending our one-point result of Ferrari and Nejjar (2015). article_processing_charge: No article_type: original author: - first_name: Patrik full_name: Ferrari, Patrik last_name: Ferrari - first_name: Peter full_name: Nejjar, Peter id: 4BF426E2-F248-11E8-B48F-1D18A9856A87 last_name: Nejjar citation: ama: Ferrari P, Nejjar P. Fluctuations of the competition interface in presence of shocks. Revista Latino-Americana de Probabilidade e Estatística. 2017;9:299-325. doi:10.30757/ALEA.v14-17 apa: Ferrari, P., & Nejjar, P. (2017). Fluctuations of the competition interface in presence of shocks. Revista Latino-Americana de Probabilidade e Estatística. Instituto Nacional de Matematica Pura e Aplicada. https://doi.org/10.30757/ALEA.v14-17 chicago: Ferrari, Patrik, and Peter Nejjar. “Fluctuations of the Competition Interface in Presence of Shocks.” Revista Latino-Americana de Probabilidade e Estatística. Instituto Nacional de Matematica Pura e Aplicada, 2017. https://doi.org/10.30757/ALEA.v14-17. ieee: P. Ferrari and P. Nejjar, “Fluctuations of the competition interface in presence of shocks,” Revista Latino-Americana de Probabilidade e Estatística, vol. 9. Instituto Nacional de Matematica Pura e Aplicada, pp. 299–325, 2017. ista: Ferrari P, Nejjar P. 2017. Fluctuations of the competition interface in presence of shocks. Revista Latino-Americana de Probabilidade e Estatística. 9, 299–325. mla: Ferrari, Patrik, and Peter Nejjar. “Fluctuations of the Competition Interface in Presence of Shocks.” Revista Latino-Americana de Probabilidade e Estatística, vol. 9, Instituto Nacional de Matematica Pura e Aplicada, 2017, pp. 299–325, doi:10.30757/ALEA.v14-17. short: P. Ferrari, P. Nejjar, Revista Latino-Americana de Probabilidade e Estatística 9 (2017) 299–325. date_created: 2018-12-11T11:46:31Z date_published: 2017-03-23T00:00:00Z date_updated: 2023-10-10T13:10:32Z day: '23' department: - _id: LaEr - _id: JaMa doi: 10.30757/ALEA.v14-17 ec_funded: 1 intvolume: ' 9' language: - iso: eng main_file_link: - open_access: '1' url: http://alea.impa.br/articles/v14/14-17.pdf month: '03' oa: 1 oa_version: Submitted Version page: 299 - 325 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Revista Latino-Americana de Probabilidade e Estatística publication_status: published publisher: Instituto Nacional de Matematica Pura e Aplicada publist_id: '7376' quality_controlled: '1' scopus_import: '1' status: public title: Fluctuations of the competition interface in presence of shocks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2017' ... --- _id: '557' abstract: - lang: eng text: PURPOSE. Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reactivation of the endogenous genome. METHODS. Double-transgenic mice carrying a Rosa26-(LoxP)-tdTomato reporter, and a mutant allele for the proapoptotic Bax gene were reared. The Bax mutant blocks apoptosis, but RGCs still exhibit nuclear atrophy and gene silencing. At times ranging from 1 hour to 4 weeks after optic nerve crush (ONC), eyes received an intravitreal injection of AAV2 virus carrying the Cre recombinase. Successful transduction was monitored by expression of the tdTomato reporter. Immunostaining was used to localize tdTomato expression in select cell types. RESULTS. Successful transduction of RGCs was achieved at all time points after ONC using AAV2 expressing Cre from the phosphoglycerate kinase (Pgk) promoter, but not the CMV promoter. ONC promoted an increase in the transduction of cell types in the inner nuclear layer, including Müller cells and rod bipolar neurons. There was minimal evidence of transduction of amacrine cells and astrocytes in the inner retina or optic nerve. CONCLUSIONS. Damaged RGCs can be transduced and at least some endogenous genes can be subsequently activated. Optic nerve damage may change retinal architecture to allow greater penetration of an AAV2 virus to transduce several additional cell types in the inner nuclear layer. article_processing_charge: No author: - first_name: Robert full_name: Nickells, Robert last_name: Nickells - first_name: Heather full_name: Schmitt, Heather last_name: Schmitt - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: Cassandra full_name: Schlamp, Cassandra last_name: Schlamp citation: ama: Nickells R, Schmitt H, Maes ME, Schlamp C. AAV2 mediated transduction of the mouse retina after optic nerve injury. Investigative Ophthalmology and Visual Science. 2017;58(14):6091-6104. doi:10.1167/iovs.17-22634 apa: Nickells, R., Schmitt, H., Maes, M. E., & Schlamp, C. (2017). AAV2 mediated transduction of the mouse retina after optic nerve injury. Investigative Ophthalmology and Visual Science. Association for Research in Vision and Ophthalmology. https://doi.org/10.1167/iovs.17-22634 chicago: Nickells, Robert, Heather Schmitt, Margaret E Maes, and Cassandra Schlamp. “AAV2 Mediated Transduction of the Mouse Retina after Optic Nerve Injury.” Investigative Ophthalmology and Visual Science. Association for Research in Vision and Ophthalmology, 2017. https://doi.org/10.1167/iovs.17-22634. ieee: R. Nickells, H. Schmitt, M. E. Maes, and C. Schlamp, “AAV2 mediated transduction of the mouse retina after optic nerve injury,” Investigative Ophthalmology and Visual Science, vol. 58, no. 14. Association for Research in Vision and Ophthalmology, pp. 6091–6104, 2017. ista: Nickells R, Schmitt H, Maes ME, Schlamp C. 2017. AAV2 mediated transduction of the mouse retina after optic nerve injury. Investigative Ophthalmology and Visual Science. 58(14), 6091–6104. mla: Nickells, Robert, et al. “AAV2 Mediated Transduction of the Mouse Retina after Optic Nerve Injury.” Investigative Ophthalmology and Visual Science, vol. 58, no. 14, Association for Research in Vision and Ophthalmology, 2017, pp. 6091–104, doi:10.1167/iovs.17-22634. short: R. Nickells, H. Schmitt, M.E. Maes, C. Schlamp, Investigative Ophthalmology and Visual Science 58 (2017) 6091–6104. date_created: 2018-12-11T11:47:10Z date_published: 2017-12-14T00:00:00Z date_updated: 2023-10-10T14:06:18Z day: '14' ddc: - '576' department: - _id: SaSi doi: 10.1167/iovs.17-22634 file: - access_level: open_access checksum: d7a7b6f1fa9211a04e5e65634a0265d9 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:53Z date_updated: 2020-07-14T12:47:04Z file_id: '5311' file_name: IST-2018-920-v1+1_i1552-5783-58-14-6091.pdf file_size: 2955559 relation: main_file file_date_updated: 2020-07-14T12:47:04Z has_accepted_license: '1' intvolume: ' 58' issue: '14' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 6091 - 6104 publication: Investigative Ophthalmology and Visual Science publication_identifier: issn: - '01460404' publication_status: published publisher: Association for Research in Vision and Ophthalmology publist_id: '7254' pubrep_id: '920' quality_controlled: '1' scopus_import: '1' status: public title: AAV2 mediated transduction of the mouse retina after optic nerve injury tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 58 year: '2017' ... --- _id: '997' abstract: - lang: eng text: Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems. article_number: '235301' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Yakaboylu E, Deuchert A, Lemeshko M. Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. 2017;119(23). doi:10.1103/PhysRevLett.119.235301 apa: Yakaboylu, E., Deuchert, A., & Lemeshko, M. (2017). Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.119.235301 chicago: Yakaboylu, Enderalp, Andreas Deuchert, and Mikhail Lemeshko. “Emergence of Non-Abelian Magnetic Monopoles in a Quantum Impurity Problem.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.119.235301. ieee: E. Yakaboylu, A. Deuchert, and M. Lemeshko, “Emergence of non-abelian magnetic monopoles in a quantum impurity problem,” Physical Review Letters, vol. 119, no. 23. American Physical Society, 2017. ista: Yakaboylu E, Deuchert A, Lemeshko M. 2017. Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. 119(23), 235301. mla: Yakaboylu, Enderalp, et al. “Emergence of Non-Abelian Magnetic Monopoles in a Quantum Impurity Problem.” Physical Review Letters, vol. 119, no. 23, 235301, American Physical Society, 2017, doi:10.1103/PhysRevLett.119.235301. short: E. Yakaboylu, A. Deuchert, M. Lemeshko, Physical Review Letters 119 (2017). date_created: 2018-12-11T11:49:36Z date_published: 2017-12-06T00:00:00Z date_updated: 2023-10-10T13:31:54Z day: '06' department: - _id: MiLe - _id: RoSe doi: 10.1103/PhysRevLett.119.235301 ec_funded: 1 external_id: arxiv: - '1705.05162' isi: - '000417132100007' intvolume: ' 119' isi: 1 issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.05162 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_identifier: issn: - 0031-9007 publication_status: published publisher: American Physical Society publist_id: '6401' quality_controlled: '1' scopus_import: '1' status: public title: Emergence of non-abelian magnetic monopoles in a quantum impurity problem type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 119 year: '2017' ... --- _id: '911' abstract: - lang: eng text: We develop a probabilistic technique for colorizing grayscale natural images. In light of the intrinsic uncertainty of this task, the proposed probabilistic framework has numerous desirable properties. In particular, our model is able to produce multiple plausible and vivid colorizations for a given grayscale image and is one of the first colorization models to provide a proper stochastic sampling scheme. Moreover, our training procedure is supported by a rigorous theoretical framework that does not require any ad hoc heuristics and allows for efficient modeling and learning of the joint pixel color distribution.We demonstrate strong quantitative and qualitative experimental results on the CIFAR-10 dataset and the challenging ILSVRC 2012 dataset. article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Royer A, Kolesnikov A, Lampert C. Probabilistic image colorization. In: BMVA Press; 2017:85.1-85.12. doi:10.5244/c.31.85' apa: 'Royer, A., Kolesnikov, A., & Lampert, C. (2017). Probabilistic image colorization (p. 85.1-85.12). Presented at the BMVC: British Machine Vision Conference, London, United Kingdom: BMVA Press. https://doi.org/10.5244/c.31.85' chicago: Royer, Amélie, Alexander Kolesnikov, and Christoph Lampert. “Probabilistic Image Colorization,” 85.1-85.12. BMVA Press, 2017. https://doi.org/10.5244/c.31.85. ieee: 'A. Royer, A. Kolesnikov, and C. Lampert, “Probabilistic image colorization,” presented at the BMVC: British Machine Vision Conference, London, United Kingdom, 2017, p. 85.1-85.12.' ista: 'Royer A, Kolesnikov A, Lampert C. 2017. Probabilistic image colorization. BMVC: British Machine Vision Conference, 85.1-85.12.' mla: Royer, Amélie, et al. Probabilistic Image Colorization. BMVA Press, 2017, p. 85.1-85.12, doi:10.5244/c.31.85. short: A. Royer, A. Kolesnikov, C. Lampert, in:, BMVA Press, 2017, p. 85.1-85.12. conference: end_date: 2017-09-07 location: London, United Kingdom name: 'BMVC: British Machine Vision Conference' start_date: 2017-09-04 date_created: 2018-12-11T11:49:09Z date_published: 2017-09-01T00:00:00Z date_updated: 2023-10-16T10:04:02Z day: '01' ddc: - '000' department: - _id: ChLa doi: 10.5244/c.31.85 ec_funded: 1 external_id: arxiv: - '1705.04258' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-08-10T07:14:33Z date_updated: 2020-08-10T07:14:33Z file_id: '8224' file_name: 2017_BMVC_Royer.pdf file_size: 1625363 relation: main_file success: 1 file_date_updated: 2020-08-10T07:14:33Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 85.1-85.12 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: eisbn: - 190172560X publication_status: published publisher: BMVA Press publist_id: '6532' quality_controlled: '1' related_material: record: - id: '8390' relation: dissertation_contains status: public scopus_import: '1' status: public title: Probabilistic image colorization type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '1146' abstract: - lang: eng text: 'Aim: The present study was to compare the effects of nicotinic acid and nicotinamide on the plasma methyl donors, choline and betaine. Methods: Thirty adult subjects were randomly divided into three groups of equal size, and orally received purified water (C group), nicotinic acid (300 mg, NA group) or nicotinamide (300 mg, NM group). Plasma nicotinamide, N 1-methylnicotinamide, homocysteine, betaine and choline levels before and 1.5-h and 3-h post-dosing, plasma normetanephrine and metanephrine concentrations at 3-h post-dosing, and the urinary excretion of N 1-methyl-2-pyridone-5-carboxamide during the test period were examined. Results: The level of 3-h plasma nicotinamide, N 1-methylnicotinamide, homocysteine, the urinary excretion of N 1-methyl-2-pyridone-5-carboxamide and pulse pressure (PP) in the NM group was 221%, 3972%, 61%, 1728% and 21.2% higher than that of the control group (P < 0.01, except homocysteine and PP P < 0.05), while the 3-h plasma betaine, normetanephrine and metanephrine level in the NM group was 24.4%, 9.4% and 11.7% lower (P < 0.05, except betaine P < 0.01), without significant difference in choline levels. Similar but less pronounced changes were observed in the NA group, with a lower level of 3-h plasma N 1-methylnicotinamide (1.90 ± 0.20 μmol/l vs. 3.62 ± 0.27 μmol/l, P < 0.01) and homocysteine (12.85 ± 1.39 μmol/l vs. 18.08 ± 1.02 μmol/l, P < 0.05) but a higher level of betaine (27.44 ± 0.71 μmol/l vs. 23.52 ± 0.61 μmol/l, P < 0.05) than that of the NM group. Conclusion: The degradation of nicotinamide consumes more betaine than that of nicotinic acid at identical doses. This difference should be taken into consideration in niacin fortification. © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism.' acknowledgement: We thank all the participants for their contribution to this study and volunteers from the Nursing School of Dalian University for their supporting to collect blood and urine samples of the participants. We also thank Dr. Yasunori Takayama from National Institute for Physiological Sciences of Japan for his kind help. article_processing_charge: No author: - first_name: Wuping full_name: Sun, Wuping last_name: Sun - first_name: Ming-Zhu full_name: Zhai, Ming-Zhu id: 34009CFA-F248-11E8-B48F-1D18A9856A87 last_name: Zhai - first_name: Da full_name: Li, Da last_name: Li - first_name: Yiming full_name: Zhou, Yiming last_name: Zhou - first_name: Nana full_name: Chen, Nana last_name: Chen - first_name: Ming full_name: Guo, Ming last_name: Guo - first_name: Shisheng full_name: Zhou, Shisheng last_name: Zhou citation: ama: Sun W, Zhai M-Z, Li D, et al. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. 2017;36(4):1136-1142. doi:10.1016/j.clnu.2016.07.016 apa: Sun, W., Zhai, M.-Z., Li, D., Zhou, Y., Chen, N., Guo, M., & Zhou, S. (2017). Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. Elsevier. https://doi.org/10.1016/j.clnu.2016.07.016 chicago: Sun, Wuping, Ming-Zhu Zhai, Da Li, Yiming Zhou, Nana Chen, Ming Guo, and Shisheng Zhou. “Comparison of the Effects of Nicotinic Acid and Nicotinamide Degradation on Plasma Betaine and Choline Levels.” Clinical Nutrition. Elsevier, 2017. https://doi.org/10.1016/j.clnu.2016.07.016. ieee: W. Sun et al., “Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels,” Clinical Nutrition, vol. 36, no. 4. Elsevier, pp. 1136–1142, 2017. ista: Sun W, Zhai M-Z, Li D, Zhou Y, Chen N, Guo M, Zhou S. 2017. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. 36(4), 1136–1142. mla: Sun, Wuping, et al. “Comparison of the Effects of Nicotinic Acid and Nicotinamide Degradation on Plasma Betaine and Choline Levels.” Clinical Nutrition, vol. 36, no. 4, Elsevier, 2017, pp. 1136–42, doi:10.1016/j.clnu.2016.07.016. short: W. Sun, M.-Z. Zhai, D. Li, Y. Zhou, N. Chen, M. Guo, S. Zhou, Clinical Nutrition 36 (2017) 1136–1142. date_created: 2018-12-11T11:50:24Z date_published: 2017-08-01T00:00:00Z date_updated: 2023-10-16T11:09:39Z day: '01' department: - _id: RySh doi: 10.1016/j.clnu.2016.07.016 intvolume: ' 36' issue: '4' language: - iso: eng month: '08' oa_version: None page: 1136-1142 publication: Clinical Nutrition publication_identifier: issn: - 0261-5614 publication_status: published publisher: Elsevier publist_id: '6212' quality_controlled: '1' scopus_import: '1' status: public title: Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2017' ... --- _id: '84' abstract: - lang: eng text: The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Patrice full_name: Koehl, Patrice last_name: Koehl citation: ama: 'Edelsbrunner H, Koehl P. Computational topology for structural molecular biology. In: Toth C, O’Rourke J, Goodman J, eds. Handbook of Discrete and Computational Geometry, Third Edition. Handbook of Discrete and Computational Geometry. Taylor & Francis; 2017:1709-1735. doi:10.1201/9781315119601' apa: Edelsbrunner, H., & Koehl, P. (2017). Computational topology for structural molecular biology. In C. Toth, J. O’Rourke, & J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition (pp. 1709–1735). Taylor & Francis. https://doi.org/10.1201/9781315119601 chicago: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” In Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth, Joseph O’Rourke, and Jacob Goodman, 1709–35. Handbook of Discrete and Computational Geometry. Taylor & Francis, 2017. https://doi.org/10.1201/9781315119601. ieee: H. Edelsbrunner and P. Koehl, “Computational topology for structural molecular biology,” in Handbook of Discrete and Computational Geometry, Third Edition, C. Toth, J. O’Rourke, and J. Goodman, Eds. Taylor & Francis, 2017, pp. 1709–1735. ista: 'Edelsbrunner H, Koehl P. 2017.Computational topology for structural molecular biology. In: Handbook of Discrete and Computational Geometry, Third Edition. , 1709–1735.' mla: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth et al., Taylor & Francis, 2017, pp. 1709–35, doi:10.1201/9781315119601. short: H. Edelsbrunner, P. Koehl, in:, C. Toth, J. O’Rourke, J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition, Taylor & Francis, 2017, pp. 1709–1735. date_created: 2018-12-11T11:44:32Z date_published: 2017-11-09T00:00:00Z date_updated: 2023-10-16T11:15:22Z day: '09' department: - _id: HeEd doi: 10.1201/9781315119601 editor: - first_name: Csaba full_name: Toth, Csaba last_name: Toth - first_name: Joseph full_name: O'Rourke, Joseph last_name: O'Rourke - first_name: Jacob full_name: Goodman, Jacob last_name: Goodman language: - iso: eng month: '11' oa_version: None page: 1709 - 1735 publication: Handbook of Discrete and Computational Geometry, Third Edition publication_identifier: eisbn: - '9781498711425' publication_status: published publisher: Taylor & Francis publist_id: '7970' quality_controlled: '1' scopus_import: '1' series_title: Handbook of Discrete and Computational Geometry status: public title: Computational topology for structural molecular biology type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '627' abstract: - lang: eng text: Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT "browning" and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT "browning" by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases. article_processing_charge: No author: - first_name: Changyu full_name: Jiang, Changyu last_name: Jiang - first_name: Ming-Zhu full_name: Zhai, Ming-Zhu id: 34009CFA-F248-11E8-B48F-1D18A9856A87 last_name: Zhai - first_name: Dong full_name: Yan, Dong last_name: Yan - first_name: Da full_name: Li, Da last_name: Li - first_name: Chen full_name: Li, Chen last_name: Li - first_name: Yonghong full_name: Zhang, Yonghong last_name: Zhang - first_name: Lizu full_name: Xiao, Lizu last_name: Xiao - first_name: Donglin full_name: Xiong, Donglin last_name: Xiong - first_name: Qiwen full_name: Deng, Qiwen last_name: Deng - first_name: Wuping full_name: Sun, Wuping last_name: Sun citation: ama: Jiang C, Zhai M-Z, Yan D, et al. Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. 2017;8(43):75114-75126. doi:10.18632/oncotarget.20540 apa: Jiang, C., Zhai, M.-Z., Yan, D., Li, D., Li, C., Zhang, Y., … Sun, W. (2017). Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. Impact Journals. https://doi.org/10.18632/oncotarget.20540 chicago: Jiang, Changyu, Ming-Zhu Zhai, Dong Yan, Da Li, Chen Li, Yonghong Zhang, Lizu Xiao, Donglin Xiong, Qiwen Deng, and Wuping Sun. “Dietary Menthol-Induced TRPM8 Activation Enhances WAT ‘Browning’ and Ameliorates Diet-Induced Obesity.” Oncotarget. Impact Journals, 2017. https://doi.org/10.18632/oncotarget.20540. ieee: C. Jiang et al., “Dietary menthol-induced TRPM8 activation enhances WAT ‘browning’ and ameliorates diet-induced obesity,” Oncotarget, vol. 8, no. 43. Impact Journals, pp. 75114–75126, 2017. ista: Jiang C, Zhai M-Z, Yan D, Li D, Li C, Zhang Y, Xiao L, Xiong D, Deng Q, Sun W. 2017. Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget. 8(43), 75114–75126. mla: Jiang, Changyu, et al. “Dietary Menthol-Induced TRPM8 Activation Enhances WAT ‘Browning’ and Ameliorates Diet-Induced Obesity.” Oncotarget, vol. 8, no. 43, Impact Journals, 2017, pp. 75114–26, doi:10.18632/oncotarget.20540. short: C. Jiang, M.-Z. Zhai, D. Yan, D. Li, C. Li, Y. Zhang, L. Xiao, D. Xiong, Q. Deng, W. Sun, Oncotarget 8 (2017) 75114–75126. date_created: 2018-12-11T11:47:34Z date_published: 2017-08-24T00:00:00Z date_updated: 2023-10-17T08:56:37Z day: '24' ddc: - '571' department: - _id: RySh doi: 10.18632/oncotarget.20540 file: - access_level: open_access checksum: 2219e5348bbfe1aac2725aa620c33280 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:15Z date_updated: 2020-07-14T12:47:26Z file_id: '5201' file_name: IST-2017-907-v1+1_20540-294640-4-PB.pdf file_size: 6101606 relation: main_file file_date_updated: 2020-07-14T12:47:26Z has_accepted_license: '1' intvolume: ' 8' issue: '43' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 75114 - 75126 publication: Oncotarget publication_identifier: issn: - 1949-2553 publication_status: published publisher: Impact Journals publist_id: '7167' pubrep_id: '907' quality_controlled: '1' scopus_import: '1' status: public title: Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2017' ... --- _id: '1007' abstract: - lang: eng text: 'A nonlinear system possesses an invariance with respect to a set of transformations if its output dynamics remain invariant when transforming the input, and adjusting the initial condition accordingly. Most research has focused on invariances with respect to time-independent pointwise transformations like translational-invariance (u(t) -> u(t) + p, p in R) or scale-invariance (u(t) -> pu(t), p in R>0). In this article, we introduce the concept of s0-invariances with respect to continuous input transformations exponentially growing/decaying over time. We show that s0-invariant systems not only encompass linear time-invariant (LTI) systems with transfer functions having an irreducible zero at s0 in R, but also that the input/output relationship of nonlinear s0-invariant systems possesses properties well known from their linear counterparts. Furthermore, we extend the concept of s0-invariances to second- and higher-order s0-invariances, corresponding to invariances with respect to transformations of the time-derivatives of the input, and encompassing LTI systems with zeros of multiplicity two or higher. Finally, we show that nth-order 0-invariant systems realize – under mild conditions – nth-order nonlinear differential operators: when excited by an input of a characteristic functional form, the system’s output converges to a constant value only depending on the nth (nonlinear) derivative of the input.' article_processing_charge: Yes (in subscription journal) author: - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Eduardo full_name: Sontag, Eduardo last_name: Sontag citation: ama: Lang M, Sontag E. Zeros of nonlinear systems with input invariances. Automatica. 2017;81C:46-55. doi:10.1016/j.automatica.2017.03.030 apa: Lang, M., & Sontag, E. (2017). Zeros of nonlinear systems with input invariances. Automatica. International Federation of Automatic Control. https://doi.org/10.1016/j.automatica.2017.03.030 chicago: Lang, Moritz, and Eduardo Sontag. “Zeros of Nonlinear Systems with Input Invariances.” Automatica. International Federation of Automatic Control, 2017. https://doi.org/10.1016/j.automatica.2017.03.030. ieee: M. Lang and E. Sontag, “Zeros of nonlinear systems with input invariances,” Automatica, vol. 81C. International Federation of Automatic Control, pp. 46–55, 2017. ista: Lang M, Sontag E. 2017. Zeros of nonlinear systems with input invariances. Automatica. 81C, 46–55. mla: Lang, Moritz, and Eduardo Sontag. “Zeros of Nonlinear Systems with Input Invariances.” Automatica, vol. 81C, International Federation of Automatic Control, 2017, pp. 46–55, doi:10.1016/j.automatica.2017.03.030. short: M. Lang, E. Sontag, Automatica 81C (2017) 46–55. date_created: 2018-12-11T11:49:39Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-10-17T08:51:18Z day: '01' ddc: - '000' department: - _id: CaGu - _id: GaTk doi: 10.1016/j.automatica.2017.03.030 ec_funded: 1 external_id: isi: - '000403513900006' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:11:29Z date_updated: 2018-12-12T10:11:29Z file_id: '4884' file_name: IST-2017-813-v1+1_ZerosOfNonlinearSystems.pdf file_size: 1401954 relation: main_file file_date_updated: 2018-12-12T10:11:29Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 46 - 55 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Automatica publication_identifier: issn: - 0005-1098 publication_status: published publisher: International Federation of Automatic Control publist_id: '6391' pubrep_id: '813' quality_controlled: '1' scopus_import: '1' status: public title: Zeros of nonlinear systems with input invariances tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 81C year: '2017' ...